cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104546 Triangle read by rows: T(n,k) is the number of Schroeder paths of length 2n and having k platforms (i.e., UHD, UHHD, UHHHD, ..., where U=(1,1), D=(1,-1), H=(2,0)).

Original entry on oeis.org

1, 2, 5, 1, 16, 6, 60, 29, 1, 245, 138, 11, 1051, 670, 84, 1, 4660, 3319, 562, 17, 21174, 16691, 3536, 184, 1, 98072, 84864, 21510, 1628, 24, 461330, 435048, 128134, 12860, 345, 1, 2197997, 2244532, 752486, 94534, 3865, 32, 10585173, 11639558, 4373658, 661498, 37265, 585, 1
Offset: 0

Views

Author

Emeric Deutsch, Mar 14 2005

Keywords

Comments

A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318).
Row n contains 1 + floor(n/2) terms.

Examples

			T(3,1) = 6 because we have H(UHD), UD(UHD), (UHD)H, (UHD)UD, (UHHD), U(UHD)D; the platforms are shown between parentheses.
Triangle starts:
      1;
      2;
      5,     1;
     16,     6;
     60,    29,     1;
    245,   138,    11;
   1051,   670,    84,    1;
   4660,  3319,   562,   17;
  21174, 16691,  3536,  184,  1;
  98072, 84864, 21510, 1628, 24;
		

Crossrefs

Cf. A006318 (row sums), A104547 (first column).

Programs

  • Mathematica
    With[{m=20}, CoefficientList[CoefficientList[Series[(1 -2*y +(2-x)*y^2 - Sqrt[1 -8*y +2*(8-x)*y^2 +4*(x-3)*y^3 +(x-2)^2*y^4])/(2*y*(1-y)), {y,0,m}, {x,0,Floor[m/2]}], y], x]]//Flatten (* G. C. Greubel, Jan 19 2023 *)

Formula

T(n, 0) = A104547(n).
Sum_{k=0..floor(n/2)} T(n, k) = A006318(n) (row sums).
G.f.: G = G(t,z) satisfies G = 1 + z*G + z*G*(G + (t-1)*z/(1-z)).
G.f.: (1 - 2*y + (2-x)*y^2 - sqrt(1 - 8*y + 2*(8-*x)*y^2 + 4*(x-3)*y^3 + (x-2)^2*y^4))/(2*y*(1-y)). - G. C. Greubel, Jan 19 2023