cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118926 Invariant column vector V under matrix product A104546*V = V: a(n) = Sum_{k=0,[n/2]} A104546(n,k)*a(k).

Original entry on oeis.org

1, 2, 7, 28, 125, 598, 3007, 15708, 84585, 466954, 2632167, 15103676, 88012801, 519848442, 3107443803, 18774545752, 114527169657, 704731976138, 4370943547471, 27306560735812, 171728169545661, 1086605771091766
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Triangle A104546(n,k) = the number of Schroeder paths of length 2n and having k platforms.

Crossrefs

Cf. A104546, A118927 (self-convolution square-root).

Programs

  • PARI
    {a(n)=local(G=1+x+x*O(x^n));if(n==0,1, for(i=0,n,G=1+x*G+x*G*(G+(y-1)*x/(1-x))); sum(k=0,n\2,a(k)*polcoeff(polcoeff(G+y*O(y^k),n,x),k,y)))}

Formula

Self-convolution of A118927.

A104547 Number of Schroeder paths of length 2n having no UHD, UHHD, UHHHD, ..., where U=(1,1), D=(1,-1), H=(2,0).

Original entry on oeis.org

1, 2, 5, 16, 60, 245, 1051, 4660, 21174, 98072, 461330, 2197997, 10585173, 51443379, 251982793, 1242734592, 6165798680, 30754144182, 154123971932, 775669589436, 3918703613376, 19866054609754, 101029857327802, 515275408644773
Offset: 0

Views

Author

Emeric Deutsch, Mar 14 2005

Keywords

Comments

A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318).
Equals binomial transform of A119370. - Paul D. Hanna, May 17 2006

Examples

			a(2)=5 because we have HH, HUD, UDH, UDUD and UUDD (UHD does not qualify).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-2*x+2*x^2 - Sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)) )); // G. C. Greubel, Jan 02 2023
    
  • Mathematica
    CoefficientList[Series[(1-2*x+2*x^2 -Sqrt[1-8*x+16*x^2-12*x^3+4*x^4] )/(2*x*(1-x)), {x,0,40}], x] (* G. C. Greubel, Jan 02 2023 *)
  • PARI
    {a(n)=polcoeff(2*(1-x)/(1-2*x+2*x^2 + sqrt(1-8*x+16*x^2-12*x^3+4*x^4+x*O(x^n))),n)} \\ Paul D. Hanna, May 17 2006
    
  • SageMath
    def A104547_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-2*x+2*x^2 - sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)) ).list()
    A104547_list(40) # G. C. Greubel, Jan 02 2023

Formula

a(n) = A104546(n, 0).
G.f.: G = G(z) satisfies G = 1 + z*G + z*G(G - z/(1-z)).
G.f.: (1-2*x+2*x^2 - sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)). - Paul D. Hanna, May 17 2006
D-finite with recurrence (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 12*(2*n-3)*a(n-2) + 2*(14*n-37)*a(n-3) - 2*(8*n-31)*a(n-4) + 4*(n-5)*a(n-5). - R. J. Mathar, Jul 26 2022

A118927 Self-convolution square-root of A118926.

Original entry on oeis.org

1, 1, 3, 11, 47, 219, 1083, 5597, 29933, 164547, 925289, 5303409, 30898069, 182587159, 1092498017, 6609496707, 40383429717, 248940496629, 1546962207417, 9683696676693, 61024927547241, 386936560902269, 2467341175475253
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Examples

			A118926 satisfies: A118926(n) = Sum_{k=0,[n/2]} A104546(n,k)*A118926(k),
where A104546(n,k) is the number of Schroeder paths of length 2n and having k platforms. Is this sequence always integer?
		

Crossrefs

Showing 1-3 of 3 results.