cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A119370 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*(A(x)^2 - A(x)).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 225, 816, 3031, 11473, 44096, 171631, 675130, 2679728, 10719237, 43168826, 174885089, 712222799, 2914150406, 11973792218, 49385167369, 204386777160, 848530495383, 3532844222611, 14747626307436, 61712139464939
Offset: 0

Views

Author

Paul D. Hanna, May 16 2006

Keywords

Comments

Equals base sequence of pendular trinomial triangle A119369; iterated convolutions of this sequence with the central terms (A119371) generates all diagonals of A119369. For example: A119372 = A119370 * A119371; A119373 = A119370^2 * A119371.
Diagonal sums of number array A133336. - Philippe Deléham, Nov 09 2009

Examples

			A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 225*x^6 + 816*x^7 +...
x*A(x)^2 = x + 2*x^2 + 5*x^3 + 16*x^4 + 54*x^5 + 190*x^6 + 690*x^7 +...
x^2*( A(x)^2 - A(x) ) = 1*x^3 + 3*x^4 + 10*x^5 + 35*x^6 + 126*x^7 +...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (1+x^2 -Sqrt(1-4*x-2*x^2+x^4))/(2*x*(1+x)) )); // G. C. Greubel, Mar 17 2021
  • Maple
    m:= 30;
    S:= series( (1+x^2 -sqrt(1-4*x-2*x^2+x^4))/(2*x*(1+x)), x, m+1);
    seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Mar 17 2021
  • Mathematica
    CoefficientList[Series[((1+x^2)-Sqrt[(1+x^2)^2-4*x*(1+x)])/(2*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 11 2013 *)
  • PARI
    {a(n)=polcoeff(2/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x*O(x^n))),n)}
    
  • Sage
    def A119370_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1+x^2 -sqrt(1-4*x-2*x^2+x^4))/(2*x*(1+x)) ).list()
    A119370_list(30) # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: A(x) = ((1+x^2) - sqrt( (1+x^2)^2 - 4*x*(1+x) ))/(2*x*(1+x)). Equals the inverse binomial transform of A104547.
Recurrence: (n+1)*a(n) = 3*(n-1)*a(n-1) + 6*(n-1)*a(n-2) + 2*(n-2)*a(n-3) - (n-5)*a(n-4) - (n-5)*a(n-5). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ sqrt(-z^2-3*z+1)*(4+2*z-z^3)^(n+1)*(-z^3+z^2+z+3) / (8*sqrt(Pi) * n^(3/2)), where z = 1/(2*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35 + 3*sqrt(129))^(1/3)))) - 1/2*sqrt(8/3-1/3*(280-24*sqrt(129))^(1/3) - 2/3*(35+3*sqrt(129))^(1/3) + 8*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35 + 3*sqrt(129))^(1/3)))) = 0.225270426... is the root of the equation 1-2*z^2+z^4-4*z=0. - Vaclav Kotesovec, Sep 11 2013
G.f.: 1/G(0) where G(k) = 1 - q/(1 - (q + q^2) / G(k+1) ). - Joerg Arndt, Dec 06 2014
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,k) * binomial(2*n-3*k+1,n-2*k)/(2*n-3*k+1). - Seiichi Manyama, Aug 28 2023
Conjecture: A(x) = 1 + x*exp(Sum_{n >= 1} g(n, x)*x^n/n), where g(n, x) = Sum_{k = 0..n} binomial(n, k)^2*(1 + x)^k. Cf. A105633 and A167638. - Peter Bala, Sep 10 2024

A104546 Triangle read by rows: T(n,k) is the number of Schroeder paths of length 2n and having k platforms (i.e., UHD, UHHD, UHHHD, ..., where U=(1,1), D=(1,-1), H=(2,0)).

Original entry on oeis.org

1, 2, 5, 1, 16, 6, 60, 29, 1, 245, 138, 11, 1051, 670, 84, 1, 4660, 3319, 562, 17, 21174, 16691, 3536, 184, 1, 98072, 84864, 21510, 1628, 24, 461330, 435048, 128134, 12860, 345, 1, 2197997, 2244532, 752486, 94534, 3865, 32, 10585173, 11639558, 4373658, 661498, 37265, 585, 1
Offset: 0

Views

Author

Emeric Deutsch, Mar 14 2005

Keywords

Comments

A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318).
Row n contains 1 + floor(n/2) terms.

Examples

			T(3,1) = 6 because we have H(UHD), UD(UHD), (UHD)H, (UHD)UD, (UHHD), U(UHD)D; the platforms are shown between parentheses.
Triangle starts:
      1;
      2;
      5,     1;
     16,     6;
     60,    29,     1;
    245,   138,    11;
   1051,   670,    84,    1;
   4660,  3319,   562,   17;
  21174, 16691,  3536,  184,  1;
  98072, 84864, 21510, 1628, 24;
		

Crossrefs

Cf. A006318 (row sums), A104547 (first column).

Programs

  • Mathematica
    With[{m=20}, CoefficientList[CoefficientList[Series[(1 -2*y +(2-x)*y^2 - Sqrt[1 -8*y +2*(8-x)*y^2 +4*(x-3)*y^3 +(x-2)^2*y^4])/(2*y*(1-y)), {y,0,m}, {x,0,Floor[m/2]}], y], x]]//Flatten (* G. C. Greubel, Jan 19 2023 *)

Formula

T(n, 0) = A104547(n).
Sum_{k=0..floor(n/2)} T(n, k) = A006318(n) (row sums).
G.f.: G = G(t,z) satisfies G = 1 + z*G + z*G*(G + (t-1)*z/(1-z)).
G.f.: (1 - 2*y + (2-x)*y^2 - sqrt(1 - 8*y + 2*(8-*x)*y^2 + 4*(x-3)*y^3 + (x-2)^2*y^4))/(2*y*(1-y)). - G. C. Greubel, Jan 19 2023
Showing 1-2 of 2 results.