cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A119369 Pendular trinomial triangle, read by rows of 2n+1 terms (n>=0), defined by the recurrence: if 0 < k < n, T(n,k) = T(n-1,k) + T(n,2n-1-k); otherwise, if n-1 < k < 2n-1, T(n,k) = T(n-1,k) + T(n,2n-2-k); with T(n,0)=T(n+1,2n)=1 and T(n+1,2n+1)=T(n+1,2n+2)=0.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 6, 9, 7, 3, 1, 0, 0, 1, 4, 10, 20, 30, 23, 11, 4, 1, 0, 0, 1, 5, 15, 36, 70, 104, 81, 40, 16, 5, 1, 0, 0, 1, 6, 21, 58, 133, 253, 374, 293, 149, 63, 22, 6, 1, 0, 0, 1, 7, 28, 87, 226, 501, 938, 1380, 1087, 564, 248, 93, 29, 7, 1, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, May 16 2006

Keywords

Comments

The diagonals may be generated by iterated convolutions of a base sequence B with the sequence C of central terms. The g.f. B(x) of the base sequence satisfies: B = 1 + x*B^2 + x^2*(B^2 - B); the g.f. C(x) of the central terms satisfies: C(x) = 1/(1+x - x*B(x)).

Examples

			To obtain row 4, pendular sums of row 3 are carried out as follows.
  [1, 2, 3, 2, 1, 0, 0]: given row 3;
  [1, _, _, _, _, _, _]: start with T(4,0) = T(3,0) = 1;
  [1, _, _, _, _, _, 1]: T(4,6) = T(4,0) + T(3,6) = 1 + 0 = 1;
  [1, 3, _, _, _, _, 1]: T(4,1) = T(4,6) + T(3,1) = 1 + 2 = 3;
  [1, 3, _, _, _, 3, 1]: T(4,5) = T(4,1) + T(3,5) = 3 + 0 = 3;
  [1, 3, 6, _, _, 3, 1]: T(4,2) = T(4,5) + T(3,2) = 3 + 3 = 6;
  [1, 3, 6, _, 7, 3, 1]: T(4,4) = T(4,2) + T(3,4) = 6 + 1 = 7;
  [1, 3, 6, 9, 7, 3, 1]: T(4,3) = T(4,4) + T(3,3) = 7 + 2 = 9;
  [1, 3, 6, 9, 7, 3, 1, 0, 0]: complete row 4 by appending two zeros.
Triangle begins:
  1;
  1, 0,  0;
  1, 1,  1,  0,   0;
  1, 2,  3,  2,   1,   0,   0;
  1, 3,  6,  9,   7,   3,   1,    0,    0;
  1, 4, 10, 20,  30,  23,  11,    4,    1,   0,   0;
  1, 5, 15, 36,  70, 104,  81,   40,   16,   5,   1,  0,  0;
  1, 6, 21, 58, 133, 253, 374,  293,  149,  63,  22,  6,  1, 0, 0;
  1, 7, 28, 87, 226, 501, 938, 1380, 1087, 564, 248, 93, 29, 7, 1, 0, 0;
Central terms are:
  C = A119371 = [1, 0, 1, 2, 7, 23, 81, 293, 1087, 4110, ...].
Lower diagonals start:
  D1 = A119372 = [1, 1, 3, 9, 30, 104, 374, 1380, 5197, ...];
  D2 = A119373 = [1, 2, 6, 20, 70, 253, 938, 3546, 13617, ...].
  Diagonals above central terms (ignoring leading zeros) start:
  U1 = A119375 = [1, 3, 11, 40, 149, 564, 2166, 8420, ...];
  U2 = A119376 = [1, 4, 16, 63, 248, 980, 3894, 15563, ...].
There exists the base sequence:
  B = A119370 = [1, 1, 2, 6, 19, 64, 225, 816, 3031, 11473, ...]
which generates all diagonals by convolutions with central terms:
  D2 = B * D1 = B^2 * C
  U2 = B * U1 = B^2 * C"
where C" = [1, 2, 7, 23, 81, 293, 1087, ...]
are central terms not including the initial [1,0].
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n=0 then 1
        elif k<0 or k>2*(n-1) then 0
        elif n=2 and k<3 then 1
        else T(n-1, k) + `if`(kG. C. Greubel, Mar 16 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k<0 || k>2*(n-1), 0, If[n==2 && k<3, 1, T[n-1, k] +If[kG. C. Greubel, Mar 16 2021 *)
  • PARI
    T(n,k)= if(k==0 && n==0, 1, if(k>2*n-2 || k<0, 0, if(n==2 && k<=2, 1, T(n-1,k) + if(k
    				
  • Sage
    @CachedFunction
    def T(n, k):
        if (n==0 and k==0): return 1
        elif (k<0 or k>2*(n-1)): return 0
        elif (n==2 and k<3): return 1
        else: return T(n-1, k) + ( T(n, 2*n-k-1) if kG. C. Greubel, Mar 16 2021

Formula

Sum_{k=0..2*n} T(n, k) = A119372(n). - G. C. Greubel, Mar 16 2021

A119371 G.f. satisfies: A(x) = (1+x) - x*(4+x)*A(x) + x*(3+2*x)*A(x)^2.

Original entry on oeis.org

1, 0, 1, 2, 7, 23, 81, 293, 1087, 4110, 15783, 61387, 241329, 957400, 3828055, 15410651, 62410871, 254095382, 1039394147, 4269718110, 17606507789, 72852976317, 302403773303, 1258855723796, 5254253027485, 21983753239135
Offset: 0

Views

Author

Paul D. Hanna, May 17 2006

Keywords

Comments

Equals central terms of pendular trinomial triangle A119369.

Examples

			            A(x) = 1 + x^2 + 2*x^3 + 7*x^4 + 23*x^5 + 81*x^6 ...;
   -x*(4+x)*A(x) = -4*x -x^2 -4*x^3 -9*x^4 -30*x^5 -99*x^6 - ...;
x*(3+2*x)*A(x)^2 = 3*x +2*x^2 +6*x^3 +16*x^4 +53*x^5 +180*x^6 + ...;
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (1+4*x+x^2 -Sqrt(1-4*x-2*x^2+x^4))/(2*x*(3+2*x)) )); // G. C. Greubel, Mar 17 2021
  • Maple
    m:= 30;
    S:= series( (1+4*x+x^2 -sqrt(1-4*x-2*x^2+x^4))/(2*x*(3+2*x)), x, m+1);
    seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Mar 17 2021
  • Mathematica
    CoefficientList[Series[(1+4*x+x^2-Sqrt[(1+4*x+x^2)^2-4*x*(1+x)*(3+2*x)])/(2*x*(3+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 11 2013 *)
  • PARI
    {a(n)=polcoeff((2*(1+x))/(1+4*x+x^2+sqrt((1+4*x+x^2)^2-4*x*(1+x)*(3+2*x)+x*O(x^n))),n)}
    
  • Sage
    def A119371_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1+4*x+x^2 -sqrt(1-4*x-2*x^2+x^4))/(2*x*(3+2*x)) ).list()
    A119371_list(30) # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: A(x) = (1+4*x+x^2 - sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x)))/(2*x*(3+2*x)).
G.f.: A(x) = 1/(1+x - x*B(x)) = (1 + x*H(x))/(1+x) = 1 + x^2*F(x)/B(x), where B(x) is g.f. of A119370, H(x) is g.f. of A119372, F(x) is g.f. of A119375.
Recurrence: 3*(n+1)*a(n) = 2*(5*n-4)*a(n-1) + 2*(7*n-8)*a(n-2) + 4*(n-2)*a(n-3) - 3*(n-5)*a(n-4) - 2*(n-5)*a(n-5). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ sqrt(-z^2-3*z+1)*(4+2*z-z^3)^(n+1)*(35-8*z^3+12*z^2-2*z) /(242*sqrt(Pi)*n^(3/2)), where z = 1/(2*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35+3*sqrt(129))^(1/3)))) - 1/2*sqrt(8/3-1/3*(280-24*sqrt(129))^(1/3) - 2/3*(35+3*sqrt(129))^(1/3) + 8*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35+3*sqrt(129))^(1/3)))) = 0.225270426... is the root of the equation 1-2*z^2+z^4-4*z=0. - Vaclav Kotesovec, Sep 11 2013

A119372 G.f. satisfies: A(x) = 1 + x*(1-x-x^2)*A(x) + x^2*(3+2*x)*A(x)^2.

Original entry on oeis.org

1, 1, 3, 9, 30, 104, 374, 1380, 5197, 19893, 77170, 302716, 1198729, 4785455, 19238706, 77821522, 316506253, 1293489529, 5309112257, 21876225899, 90459484106, 375256749620, 1561259497099, 6513108751281, 27238006266620
Offset: 0

Views

Author

Paul D. Hanna, May 17 2006

Keywords

Comments

Equals diagonal and row sums of pendular trinomial triangle A119369. Also equals convolution of A119370 and A119371 (central terms of A119369).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (1-x+x^2+x^3 -(1+x)*Sqrt(1-4*x-2*x^2+x^4))/(2*x^2*(3+2*x)) )); // G. C. Greubel, Mar 17 2021
  • Maple
    m:= 30;
    S:= series( (1-x+x^2+x^3 -(1+x)*sqrt(1-4*x-2*x^2+x^4))/(2*x^2*(3+2*x)), x, m+1);
    seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Mar 17 2021
  • Mathematica
    CoefficientList[Series[(1-x+x^2+x^3-Sqrt[(1-x+x^2+x^3)^2-4*x^2*(3+2*x)])/(2*x^2*(3+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 11 2013 *)
  • PARI
    {a(n)=polcoeff(2/(1-x+x^2+x^3+sqrt((1-x+x^2+x^3)^2-4*x^2*(3+2*x)+x*O(x^n))),n)}
    
  • Sage
    def A119372_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1-x+x^2+x^3 -(1+x)*sqrt(1-4*x-2*x^2+x^4))/(2*x^2*(3+2*x)) ).list()
    A119372_list(30) # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: A(x) = (1-x+x^2+x^3 - sqrt( (1-x+x^2+x^3)^2 - 4*x^2*(3+2*x)) )/(2*x^2*(3+2*x)).
G.f.: A(x) = B(x)/(1+x - x*B(x)) = B(x)*G(x), where B(x) is g.f. of A119370, G(x) is g.f. of A119371.
Recurrence: 3*(n+2)*(2*n-1)*a(n) = (20*n^2 - 6*n - 11)*a(n-1) + (28*n^2 - 18*n + 5)*a(n-2) + (8*n^2-12*n-17)*a(n-3) - 3*(2*n^2 - 9*n + 1)*a(n-4) - 2*(n-5)*(2*n+1)*a(n-5). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ sqrt(-8*z^2-5*z^3+2-5*z)*(4+2*z-z^3)^n*(-18-8*z+4*z^3+z^2)*(-35+8*z^3-12*z^2+2*z)/(242*sqrt(Pi)*n^(3/2)), where z = 1/(2*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35+3*sqrt(129))^(1/3)))) - 1/2*sqrt(8/3-1/3*(280-24*sqrt(129))^(1/3) - 2/3*(35+3*sqrt(129))^(1/3) + 8*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35+3*sqrt(129))^(1/3)))) = 0.225270426... is the root of the equation 1-2*z^2+z^4-4*z=0. - Vaclav Kotesovec, Sep 11 2013

A119373 A lower diagonal of pendular trinomial triangle A119369.

Original entry on oeis.org

1, 2, 6, 20, 70, 253, 938, 3546, 13617, 52967, 208255, 826315, 3304456, 13304924, 53891402, 219442686, 897772983, 3688451380, 15211545938, 62950542636, 261329456566, 1087985751336, 4541524025769, 19003488710465, 79696345430789
Offset: 0

Views

Author

Paul D. Hanna, May 17 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( 8*(1+x)/( ((1+x^2) +Sqrt((1+x^2)^2 -4*x*(1+x)))^2*(1+4*x+x^2 +Sqrt((1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x))) ) )); // G. C. Greubel, Mar 16 2021
  • Mathematica
    CoefficientList[Series[8*(1+x)/( ((1+x^2) + Sqrt[(1+x^2)^2 -4*x*(1+x)])^2*(1 + 4*x +x^2 +Sqrt[(1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x)])), {x,0,30}], x] (* G. C. Greubel, Mar 16 2021 *)
  • PARI
    {a(n)=polcoeff(8*(1+x)/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x*O(x^n)))^2 /(1+4*x+x^2 + sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x)+x*O(x^n))),n)}
    
  • Sage
    def A119373_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 8*(1+x)/( ((1+x^2) +sqrt((1+x^2)^2 -4*x*(1+x)))^2*(1+4*x+x^2 +sqrt((1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x))) ) ).list()
    A119373_list(30) # G. C. Greubel, Mar 16 2021
    

Formula

G.f.: A(x) = B(x)^2/(1+x - x*B(x)) = B(x)^2*G(x) = B(x)*H(x), where B(x) is g.f. of A119370, G(x) is g.f. of A119371 and H(x) is g.f. of A119372.
G.f.: 8*(1+x)/( ((1+x^2) +sqrt((1+x^2)^2 -4*x*(1+x)))^2*(1+4*x+x^2 +sqrt((1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x))) ).

A119374 A lower diagonal of pendular trinomial triangle A119369.

Original entry on oeis.org

1, 3, 10, 36, 133, 501, 1918, 7440, 29180, 115522, 461044, 1852938, 7492846, 30464306, 124461782, 510696350, 2103708187, 8696498477, 36066269640, 150015248758, 625664295594, 2615929689642, 10962436020878, 46037427169060
Offset: 0

Views

Author

Paul D. Hanna, May 17 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( 16*(1+x)/( ((1+x^2) +Sqrt((1+x^2)^2-4*x*(1+x)))^3*(1+4*x+x^2 +Sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x))) ) )); // G. C. Greubel, Mar 16 2021
  • Mathematica
    CoefficientList[Series[16*(1+x)/( ((1+x^2) +Sqrt[(1+x^2)^2 -4*x*(1+x)])^3*(1+4*x +x^2 +Sqrt[(1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x)])), {x,0,30}], x] (* G. C. Greubel, Mar 16 2021 *)
  • PARI
    {a(n)=polcoeff(16*(1+x)/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x*O(x^n)))^3 /(1+4*x+x^2 + sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x)+x*O(x^n))),n)}
    
  • Sage
    def A119374_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 16*(1+x)/( ((1+x^2) +sqrt((1+x^2)^2-4*x*(1+x)))^3*(1+4*x+x^2 +sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x))) ) ).list()
    A119374_list(30) # G. C. Greubel, Mar 16 2021
    

Formula

G.f.: A(x) = B(x)^3/(1+x - x*B(x)) = B(x)^3*G(x) = B(x)^2*H(x) = B(x)*I(x), where B(x) is g.f. of A119370, G(x) is g.f. of A119371, H(x) is g.f. of A119372 and I(x) is g.f. of A119373.
G.f.: 16*(1+x)/( ((1+x^2) +sqrt((1+x^2)^2-4*x*(1+x)))^3*(1+4*x+x^2 +sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x))) ).

A119375 Diagonal above the central terms of pendular trinomial triangle A119369, ignoring leading zeros.

Original entry on oeis.org

1, 3, 11, 40, 149, 564, 2166, 8420, 33074, 131085, 523599, 2105727, 8519469, 34652696, 141621164, 581266730, 2394961851, 9902433681, 41074316737, 170869972460, 712729001716, 2980264528670, 12490379959184, 52458339164169
Offset: 0

Views

Author

Paul D. Hanna, May 17 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (1-2*x-x^2 - Sqrt(1-4*x-2*x^2+x^4))/( 1+2*x^3+x^4 +(1+x)^2*Sqrt(1-4*x-2*x^2+x^4) ) )); // G. C. Greubel, Mar 16 2021
  • Mathematica
    CoefficientList[Series[(1-2*x-x^2 -Sqrt[1-4*x-2*x^2+x^4])/(x^2*(1+2*x^3+x^4 +(1+x)^2*Sqrt[1-4*x-2*x^2+x^4])), {x,0,30}], x] (* G. C. Greubel, Mar 16 2021 *)
  • PARI
    {a(n)=polcoeff(2/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x^3*O(x^n)))* (2*(1+x)/(1+4*x+x^2 + sqrt((1+4*x+x^2)^2-4*x*(1+x)*(3+2*x)+x^3*O(x^n)))-1)/x^2,n)}
    
  • Sage
    def A119375_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1-2*x-x^2 -sqrt(1-4*x-2*x^2+x^4))/( x^2*(1+2*x^3+x^4 +(1+x)^2*sqrt(1-4*x-2*x^2+x^4)) ) ).list()
    A119375_list(30) # G. C. Greubel, Mar 16 2021
    

Formula

G.f.: A(x) = B(x)*(G(x) - 1)/x^2 = B(x)*(B(x) - 1)/(x+x^2 - x^2*B(x)), where B(x) is g.f. of A119370 and G(x) is g.f. of A119371 (central terms of A119369).
G.f.: (1-2*x-x^2 -sqrt(1-4*x-2*x^2+x^4))/( x^2*(1+2*x^3+x^4 +(1+x)^2*sqrt(1-4*x-2*x^2+x^4)) ). - G. C. Greubel, Mar 16 2021

A119376 Second diagonal above the central terms of pendular trinomial triangle A119369, ignoring leading zeros.

Original entry on oeis.org

1, 4, 16, 63, 248, 980, 3894, 15563, 62555, 252789, 1026623, 4188390, 17159382, 70570380, 291253664, 1205935204, 5008047097, 20854723702, 87064706122, 364334839028, 1527943938306, 6420911995109, 27033938458595
Offset: 0

Views

Author

Paul D. Hanna, May 17 2006

Keywords

Comments

Equals convolution of A119370 and A119375, which is the prior diagonal above the central terms of triangle A119369.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    f:= func< x | Sqrt(1-4*x-2*x^2+x^4) >;
    Coefficients(R!( 2*(1-2*x-x^2 -f(x))/( x^2*(1+2*x^3+x^4 +(1+x)^2*f(x))*(1+x^2 +f(x)) ) )); // G. C. Greubel, Mar 17 2021
  • Mathematica
    f[x_]:= Sqrt[1-4*x-2*x^2+x^4];
    CoefficientList[Series[2*(1-2*x-x^2 -f[x])/(x^2*(1+2*x^3+x^4 +(1+x)^2*f[x])*(1+x^2 +f[x])), {x,0,30}], x] (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {a(n)=polcoeff(4/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x^3*O(x^n)))^2* (2*(1+x)/(1+4*x+x^2 + sqrt((1+4*x+x^2)^2-4*x*(1+x)*(3+2*x)+x^3*O(x^n)))-1)/x^2,n)}
    
  • SageMath
    def f(x): return sqrt(1-4*x-2*x^2+x^4)
    def A119376_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 2*(1-2*x-x^2 -f(x))/( x^2*(1+2*x^3+x^4 +(1+x)^2*f(x))*(1+x^2 +f(x)) ) ).list()
    A119376_list(30) # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: A(x) = B(x)^2*(G(x) - 1)/x^2 = B(x)^2*(B(x) - 1)/(x+x^2 - x^2*B(x)), where B(x) is g.f. of A119370 and G(x) is g.f. of A119371 (central terms of A119369).
G.f.: 2*(1-2*x-x^2-f(x))/( x^2*(1+2*x^3+x^4+(1+x)^2*f(x))*(1+x^2+f(x)) ) where f(x) = sqrt(1-4*x-2*x^2+x^4). - G. C. Greubel, Mar 17 2021

A133336 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 5, 1, 0, 14, 21, 9, 1, 0, 42, 84, 56, 14, 1, 0, 132, 330, 300, 120, 20, 1, 0, 429, 1287, 1485, 825, 225, 27, 1, 0, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 0, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 0, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2007

Keywords

Comments

Mirror image of triangle A086810; another version of A126216.
Equals A131198*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 23 2007
Diagonal sums: A119370. - Philippe Deléham, Nov 09 2009

Examples

			Triangle begins:
    1;
    1,    0;
    2,    1,    0;
    5,    5,    1,   0;
   14,   21,    9,   1,   0;
   42,   84,   56,  14,   1,  0;
  132,  330,  300, 120,  20,  1, 0;
  429, 1287, 1485, 825, 225, 27, 1, 0;
		

Crossrefs

Programs

  • Magma
    [[Binomial(n-1,k)*Binomial(2*n-k,n)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    Table[Binomial[n-1,k]*Binomial[2*n-k,n]/(n+1), {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n-1,k)*binomial(2*n-k,n)/(n+1), ", "))) \\ G. C. Greubel, Feb 05 2018
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*(-2)^k*5^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
T(n,k) = binomial(n-1,k)*binomial(2n-k,n)/(n+1), k <= n. - Philippe Deléham, Nov 02 2009

A104547 Number of Schroeder paths of length 2n having no UHD, UHHD, UHHHD, ..., where U=(1,1), D=(1,-1), H=(2,0).

Original entry on oeis.org

1, 2, 5, 16, 60, 245, 1051, 4660, 21174, 98072, 461330, 2197997, 10585173, 51443379, 251982793, 1242734592, 6165798680, 30754144182, 154123971932, 775669589436, 3918703613376, 19866054609754, 101029857327802, 515275408644773
Offset: 0

Views

Author

Emeric Deutsch, Mar 14 2005

Keywords

Comments

A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318).
Equals binomial transform of A119370. - Paul D. Hanna, May 17 2006

Examples

			a(2)=5 because we have HH, HUD, UDH, UDUD and UUDD (UHD does not qualify).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-2*x+2*x^2 - Sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)) )); // G. C. Greubel, Jan 02 2023
    
  • Mathematica
    CoefficientList[Series[(1-2*x+2*x^2 -Sqrt[1-8*x+16*x^2-12*x^3+4*x^4] )/(2*x*(1-x)), {x,0,40}], x] (* G. C. Greubel, Jan 02 2023 *)
  • PARI
    {a(n)=polcoeff(2*(1-x)/(1-2*x+2*x^2 + sqrt(1-8*x+16*x^2-12*x^3+4*x^4+x*O(x^n))),n)} \\ Paul D. Hanna, May 17 2006
    
  • SageMath
    def A104547_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-2*x+2*x^2 - sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)) ).list()
    A104547_list(40) # G. C. Greubel, Jan 02 2023

Formula

a(n) = A104546(n, 0).
G.f.: G = G(z) satisfies G = 1 + z*G + z*G(G - z/(1-z)).
G.f.: (1-2*x+2*x^2 - sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)). - Paul D. Hanna, May 17 2006
D-finite with recurrence (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 12*(2*n-3)*a(n-2) + 2*(14*n-37)*a(n-3) - 2*(8*n-31)*a(n-4) + 4*(n-5)*a(n-5). - R. J. Mathar, Jul 26 2022

A364161 G.f. satisfies A(x) = 1 + x*A(x)^2/(1 - x^3*A(x)).

Original entry on oeis.org

1, 1, 2, 5, 15, 47, 153, 514, 1769, 6205, 22102, 79733, 290721, 1069688, 3966739, 14810348, 55627778, 210046102, 796864028, 3035912900, 11610468138, 44556451207, 171529074168, 662238211929, 2563524741603, 9947573055828, 38687704042595
Offset: 0

Views

Author

Seiichi Manyama, Aug 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A364161 := proc(n)
        add( binomial(n-2*k-1,k)*binomial(2*n-5*k+1,n-3*k)/(2*n5*k+1),k=0..floor(n/3)) ;
    end proc:
    seq(A364161(n),n=0..80); # R. J. Mathar, Aug 29 2023
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(2*n-5*k+1, n-3*k)/(2*n-5*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,k) * binomial(2*n-5*k+1,n-3*k)/(2*n-5*k+1).
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(n+1)*a(n-2) +3*(-2*n+3)*a(n-3) +(-2*n+7)*a(n-5) +(n-8)*a(n-6) +(n-8)*a(n-8)=0. - R. J. Mathar, Aug 29 2023
Showing 1-10 of 11 results. Next