A119373 A lower diagonal of pendular trinomial triangle A119369.
1, 2, 6, 20, 70, 253, 938, 3546, 13617, 52967, 208255, 826315, 3304456, 13304924, 53891402, 219442686, 897772983, 3688451380, 15211545938, 62950542636, 261329456566, 1087985751336, 4541524025769, 19003488710465, 79696345430789
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 8*(1+x)/( ((1+x^2) +Sqrt((1+x^2)^2 -4*x*(1+x)))^2*(1+4*x+x^2 +Sqrt((1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x))) ) )); // G. C. Greubel, Mar 16 2021 -
Mathematica
CoefficientList[Series[8*(1+x)/( ((1+x^2) + Sqrt[(1+x^2)^2 -4*x*(1+x)])^2*(1 + 4*x +x^2 +Sqrt[(1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x)])), {x,0,30}], x] (* G. C. Greubel, Mar 16 2021 *)
-
PARI
{a(n)=polcoeff(8*(1+x)/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x*O(x^n)))^2 /(1+4*x+x^2 + sqrt((1+4*x+x^2)^2 - 4*x*(1+x)*(3+2*x)+x*O(x^n))),n)}
-
Sage
def A119373_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( 8*(1+x)/( ((1+x^2) +sqrt((1+x^2)^2 -4*x*(1+x)))^2*(1+4*x+x^2 +sqrt((1+4*x+x^2)^2 -4*x*(1+x)*(3+2*x))) ) ).list() A119373_list(30) # G. C. Greubel, Mar 16 2021
Comments