A122446 G.f. satisfies: A(x) = 1 + x*A(x)^2 + 2*x^2*(A(x)^2 - A(x)); equals the base sequence of pendular trinomial triangle A122445.
1, 1, 2, 7, 24, 88, 336, 1321, 5316, 21788, 90640, 381750, 1624592, 6975136, 30177056, 131428917, 575765820, 2535433668, 11216757104, 49829385786, 222193501760, 994153952528, 4461915817760, 20082611971226, 90625360612296
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+2*x^2 -Sqrt(1-4*x-4*x^2+4*x^4))/(2*x*(1+2*x)) )); // G. C. Greubel, Mar 16 2021 -
Maple
m:=30; S:=series( (1+2*x^2 -sqrt(1-4*x-4*x^2+4*x^4))/(2*x*(1+2*x)), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 16 2021
-
Mathematica
CoefficientList[Series[(1+2*x^2-Sqrt[1-4*x-4*x^2+4*x^4])/(2*x*(1+2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 17 2013 *)
-
PARI
{a(n)=polcoeff(2/(1+2*x^2+sqrt(1-4*x-4*x^2+4*x^4+x*O(x^n))),n)}
-
Sage
def A122446_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( (1+2*x^2 -sqrt(1-4*x-4*x^2+4*x^4))/(2*x*(1+2*x)) ).list() A122446_list(30) # G. C. Greubel, Mar 16 2021
Formula
G.f.: A(x) = (1 + 2*x^2 - sqrt(1 -4*x -4*x^2 +4*x^4))/(2*x*(1+2*x)).
Recurrence: (n+1)*a(n) = 2*(n-2)*a(n-1) + 12*(n-1)*a(n-2) + 8*(n-2)*a(n-3) - 4*(n-5)*a(n-4) - 8*(n-5)*a(n-5). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = (1/6)*(6+sqrt(6*(10 + 2^(2/3)*(43-3*sqrt(177))^(1/3) + 2^(2/3)*(43+3*sqrt(177))^(1/3))) + sqrt(6*(20-2^(2/3)*(43-3*sqrt(177))^(1/3) - 2^(2/3)*(43+3*sqrt(177))^(1/3) + 24*sqrt(6/(10+2^(2/3)*(43-3*sqrt(177))^(1/3) + 2^(2/3)*(43+3*sqrt(177))^(1/3)))))) = 4.797536514160165558... is the root of the equation 4 - 4*d^2 - 4*d^3 + d^4 = 0 and c = 0.908214882020417619380249683... is the positive root of the equation -59 - 944*c^2 - 2032*c^4 - 320*c^6 + 5184*c^8 = 0. - Vaclav Kotesovec, Sep 17 2013, updated Mar 18 2024
Comments