cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A167772 Riordan array (c(x)/(1+x*c(x)), x*c(x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 6, 8, 6, 3, 1, 18, 24, 18, 10, 4, 1, 57, 75, 57, 33, 15, 5, 1, 186, 243, 186, 111, 54, 21, 6, 1, 622, 808, 622, 379, 193, 82, 28, 7, 1, 2120, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1, 7338, 9458, 7338, 4596, 2476, 1164, 474, 163, 45, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2009, corrected Nov 12 2009

Keywords

Examples

			Triangle begins:
     1;
     0,    1;
     1,    1,    1;
     2,    3,    2,    1;
     6,    8,    6,    3,   1;
    18,   24,   18,   10,   4,   1;
    57,   75,   57,   33,  15,   5,   1;
   186,  243,  186,  111,  54,  21,   6,  1;
   622,  808,  622,  379, 193,  82,  28,  7,  1;
  2120, 2742, 2120, 1312, 690, 311, 118, 36,  8,  1;
Production matrix begins:
  0, 1;
  1, 1, 1;
  1, 1, 1, 1;
  1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  ... - _Philippe Deléham_, Mar 03 2013
		

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a167772 n k = genericIndex (a167772_row n) k
    a167772_row n = genericIndex a167772_tabl n
    a167772_tabl = [1] : [0, 1] :
                   map (\xs@(:x:) -> x : xs) (tail a065602_tabl)
    -- Reinhard Zumkeller, May 15 2014
    
  • Mathematica
    A065602[n_, k_]:= A065602[n,k]= Sum[(k-1+2*j)*Binomial[2*(n-j)-k-1, n-1]/(2*(n-j) -k-1), {j, 0, (n-k)/2}];
    T[n_, k_]:= If[k==0, A065602[n+1,3] + Boole[n==0], A065602[n+1, k+1]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2022 *)
  • SageMath
    def A065602(n,k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )
    def A167772(n,k):
        if (k==0): return A065602(n+1,3) + bool(n==0)
        else: return A065602(n+1,k+1)
    flatten([[A167772(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2022

Formula

Sum_{k=0..n} T(n, k) = A000958(n+1).
From Philippe Deléham, Nov 12 2009: (Start)
Sum_{k=0..n} T(n,k)*2^k = A014300(n).
Sum_{k=0..n} T(n,k)*2^(n-k) = A064306(n). (End)
For n > 0: T(n,0) = A065602(n+1,3), T(n,k) = A065602(n+1,k+1), k = 1..n. - Reinhard Zumkeller, May 15 2014
Showing 1-1 of 1 results.