A166830
Number of n X 3 1..2 arrays containing at least one of each value, all equal values connected, rows considered as a single number in nondecreasing order, and columns considered as a single number in nonincreasing order.
Original entry on oeis.org
2, 8, 18, 33, 54, 82, 118, 163, 218, 284, 362, 453, 558, 678, 814, 967, 1138, 1328, 1538, 1769, 2022, 2298, 2598, 2923, 3274, 3652, 4058, 4493, 4958, 5454, 5982, 6543, 7138, 7768, 8434, 9137, 9878, 10658, 11478, 12339, 13242
Offset: 1
All solutions for n=3
...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1...1.1.1
...1.1.1...1.1.1...1.1.1...2.1.1...2.1.1...2.1.1...2.2.1...2.2.1...2.2.2
...2.1.1...2.2.1...2.2.2...2.1.1...2.2.1...2.2.2...2.2.1...2.2.2...2.2.2
------
...2.1.1...2.1.1...2.1.1...2.1.1...2.1.1...2.1.1...2.2.1...2.2.1...2.2.1
...2.1.1...2.1.1...2.1.1...2.2.1...2.2.1...2.2.2...2.2.1...2.2.1...2.2.2
...2.1.1...2.2.1...2.2.2...2.2.1...2.2.2...2.2.2...2.2.1...2.2.2...2.2.2
A065602
Triangle T(n,k) giving number of hill-free Dyck paths of length 2n and having height of first peak equal to k.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 8, 6, 3, 1, 24, 18, 10, 4, 1, 75, 57, 33, 15, 5, 1, 243, 186, 111, 54, 21, 6, 1, 808, 622, 379, 193, 82, 28, 7, 1, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1, 9458, 7338, 4596, 2476, 1164, 474, 163, 45, 9, 1, 33062, 25724, 16266, 8928, 4332, 1856, 692, 218, 55, 10, 1
Offset: 2
T(3,2)=1 reflecting the unique Dyck path (UUDUDD) of length 6, with no hills and height of first peak equal to 2.
Triangle begins:
1;
1, 1;
3, 2, 1;
8, 6, 3, 1;
24, 18, 10, 4, 1;
75, 57, 33, 15, 5, 1;
243, 186, 111, 54, 21, 6, 1;
808, 622, 379, 193, 82, 28, 7, 1;
2742, 2120, 1312, 690, 311, 118, 36, 8, 1;
Row sums give
A000957 (the Fine sequence).
-
a065602 n k = sum
[(k-1+2*j) * a007318' (2*n-k-1-2*j) (n-1) `div` (2*n-k-1-2*j) |
j <- [0 .. div (n-k) 2]]
a065602_row n = map (a065602 n) [2..n]
a065602_tabl = map a065602_row [2..]
-- Reinhard Zumkeller, May 15 2014
-
a := proc(n,k) if n=0 and k=0 then 1 elif k<2 or k>n then 0 else sum((k-1+2*j)*binomial(2*n-k-1-2*j,n-1)/(2*n-k-1-2*j),j=0..floor((n-k)/2)) fi end: seq(seq(a(n,k),k=2..n),n=1..14);
-
nmax = 12; t[n_, k_] := Sum[(k-1+2j)*Binomial[2n-k-1-2j, n-1] / (2n-k-1-2j), {j, 0, (n-k)/2}]; Flatten[ Table[t[n, k], {n, 2, nmax}, {k, 2, n}]] (* Jean-François Alcover, Nov 08 2011, after Maple *)
-
def T(n,k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )
flatten([[T(n,k) for k in (2..n)] for n in (2..12)]) # G. C. Greubel, May 26 2022
A237619
Riordan array (1/(1+x*c(x)), x*c(x)) where c(x) is the g.f. of Catalan numbers (A000108).
Original entry on oeis.org
1, -1, 1, 0, 0, 1, -1, 1, 1, 1, -2, 2, 3, 2, 1, -6, 6, 8, 6, 3, 1, -18, 18, 24, 18, 10, 4, 1, -57, 57, 75, 57, 33, 15, 5, 1, -186, 186, 243, 186, 111, 54, 21, 6, 1, -622, 622, 808, 622, 379, 193, 82, 28, 7, 1, -2120, 2120, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1
Offset: 0
Triangle begins:
1;
-1, 1;
0, 0, 1;
-1, 1, 1, 1;
-2, 2, 3, 2, 1;
-6, 6, 8, 6, 3, 1;
-18, 18, 24, 18, 10, 4, 1;
-57, 57, 75, 57, 33, 15, 5, 1;
Production matrix begins:
-1, 1;
-1, 1, 1;
-1, 1, 1, 1;
-1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1, 1, 1;
-1, 1, 1, 1, 1, 1, 1, 1, 1;
-
A065602[n_, k_]:= A065602[n, k]= Sum[(k-1+2*j)*Binomial[2*(n-j)-k-1, n-1]/(2*(n - j) -k-1), {j,0,(n-k)/2}];
T[n_, k_]:= If[k==0, A065602[n, 0], If[n==1 && k==1, 1, A065602[n, k]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 27 2022 *)
-
def A065602(n, k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )
def A237619(n, k):
if (n<2): return (-1)^(n-k)
elif (k==0): return A065602(n, 0)
else: return A065602(n, k)
flatten([[A237619(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2022
Showing 1-3 of 3 results.
Comments