A104553 Sum of trapezoid weights of all Schroeder paths of length 2n.
1, 7, 38, 198, 1039, 5533, 29852, 162716, 893997, 4942723, 27466082, 153264066, 858230875, 4820155001, 27141345912, 153168964216, 866086326425, 4905744855359, 27830459812830, 158102366711550, 899290473825511, 5120997554408597, 29191620055374228, 166560724629655188
Offset: 1
Keywords
Examples
a(2) = 7 because the six Schroeder paths of length 4, namely HH,(UD)H,H(UD),(UHD), (UD)(UD) and (UUDD), have trapezoid weights 0,1,1,1,2 and 2, respectively; the maximal trapezoids are shown between parentheses.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
Programs
-
Maple
G:=(1-z-sqrt(1-6*z+z^2))/2/(1-z)^2/sqrt(1-6*z+z^2):Gser:=series(G,z=0,28): seq(coeff(Gser,z^n),n=1..25);
-
Mathematica
CoefficientList[Series[(1 - x - Sqrt[1 - 6 x + x^2]) / x /(2 (1 - x)^2 Sqrt[1 - 6 x + x^2]), {x, 0, 30}], x] (* Harvey P. Dale, May 26 2011 *)
-
PARI
x='x+O('x^66); Vec((1-x-sqrt(1-6*x+x^2))/(2*(1-x)^2*sqrt(1-6*x+x^2))) \\ Joerg Arndt, May 13 2013
Formula
G.f.: (1-x-sqrt(1-6*x+x^2))/(2*(1-x)^2*sqrt(1-6*x+x^2)).
Recurrence: n*(2*n-3)*a(n) = 2*(8*n^2 - 15*n + 5)*a(n-1) - 2*(14*n^2 - 28*n + 11)*a(n-2) + 2*(8*n^2 - 17*n + 7)*a(n-3) - (n-2)*(2*n-1)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(48+34*sqrt(2))*(3+2*sqrt(2))^n/(16*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 24 2012
Extensions
Typo in Mma program fixed by Vincenzo Librandi, May 13 2013
Comments