cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A104557 Triangle T, read by rows, such that the unsigned columns of the matrix inverse when read downwards equals the rows of T read backwards, with T(n,n)=1 and T(n,n-1) = floor((n+1)/2)*floor((n+2)/2).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 4, 1, 24, 24, 18, 6, 1, 120, 120, 96, 36, 9, 1, 720, 720, 600, 240, 72, 12, 1, 5040, 5040, 4320, 1800, 600, 120, 16, 1, 40320, 40320, 35280, 15120, 5400, 1200, 200, 20, 1, 362880, 362880, 322560, 141120, 52920, 12600, 2400, 300, 25, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2005

Keywords

Comments

Matrix inverse is A104558. Row sums form A102038. See A104559 for further formulas, where A104559(n,k) = T(n,k)/(n-k)!.

Examples

			Rows of T begin:
      1;
      1,     1;
      2,     2,     1;
      6,     6,     4,     1;
     24,    24,    18,     6,    1;
    120,   120,    96,    36,    9,    1;
    720,   720,   600,   240,   72,   12,   1;
   5040,  5040,  4320,  1800,  600,  120,  16,  1;
  40320, 40320, 35280, 15120, 5400, 1200, 200, 20, 1; ...
The matrix inverse A104558 begins:
   1;
  -1,  1;
   0, -2,  1;
   0,  2, -4,   1;
   0,  0,  6,  -6,   1;
   0,  0, -6,  18,  -9,   1;
   0,  0,  0, -24,  36, -12,   1;
   0,  0,  0,  24, -96,  72, -16, 1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=(n-k)!*binomial(n-(k\2),(k+1)\2)*binomial(n-((k+1)\2),k\2)

Formula

Formula: T(n,k) = (n-k)!*C(n-floor(k/2), floor((k+1)/2))*C(n-floor((k+1)/2), floor(k/2)).
Recurrence: T(n,k) = n*T(n-1,k) + T(n-2,k-2) for n >= k >= 2, with T(0,0) = T(1,0) = T(1,1) = 1.
T(n,0) = n!.
T(n,k) = T(n-1,k-1) + floor((k+2)/2)*T(n,k+1), T(0,0)=1, T(n,k)=0 for k > n or for k < 0. - Philippe Deléham, Dec 18 2006
Showing 1-1 of 1 results.