cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104559 Triangle, read by rows, of the number of left factors of peakless Motzkin paths of length n having k number of U's and D's (i.e., number of paths from (0,0) to the line x=n, consisting of steps U=(1,1), H=(1,0), D=(1,1), that never go below the x-axis and a U step is never followed by a D step).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 6, 1, 1, 5, 16, 18, 9, 1, 1, 6, 25, 40, 36, 12, 1, 1, 7, 36, 75, 100, 60, 16, 1, 1, 8, 49, 126, 225, 200, 100, 20, 1, 1, 9, 64, 196, 441, 525, 400, 150, 25, 1, 1, 10, 81, 288, 784, 1176, 1225, 700, 225, 30, 1, 1, 11, 100, 405, 1296, 2352
Offset: 0

Views

Author

Paul D. Hanna and Emeric Deutsch, Mar 16 2005

Keywords

Comments

Row sums form A091964, the number of left factors of peakless Motzkin paths of length n.

Examples

			Triangle begins:
  1;
  1,   1;
  1,   2,   1;
  1,   3,   4,   1;
  1,   4,   9,   6,   1;
  1,   5,  16,  18,   9,   1;
  1,   6,  25,  40,  36,  12,   1;
  1,   7,  36,  75, 100,  60,  16,   1;
  1,   8,  49, 126, 225, 200, 100,  20,   1; ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then binomial(n-floor(k/2),floor((k+1)/2))*binomial(n-floor((k+1)/2),floor(k/2)) else 0 fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Mar 16 2005
  • PARI
    T(n,k)=binomial(n-(k\2),(k+1)\2)*binomial(n-((k+1)\2),k\2)
    
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k));polcoeff(polcoeff( 2/(1-X+X^2*Y^2-2*X*Y+sqrt((1-X+X^2*Y^2)^2-4*X^2*Y^2)),n,x),k,y)}

Formula

G.f.: A(x, y) = 2/(1-x+x^2*y^2 - 2*x*y + sqrt((1-x+x^2*y^2)^2 - 4*x^2*y^2)) (due to Emeric Deutsch).
T(n, k) = C(n-floor(k/2), floor((k+1)/2))*C(n-floor((k+1)/2), floor(k/2)) = A104557(n, k)/(n-k)!.