A104560
Matrix inverse of triangle A104559, read by rows.
Original entry on oeis.org
1, -1, 1, 1, -2, 1, -2, 5, -4, 1, 6, -16, 15, -6, 1, -30, 81, -79, 36, -9, 1, 204, -552, 543, -256, 72, -12, 1, -1944, 5262, -5184, 2461, -712, 132, -16, 1, 23340, -63180, 62260, -29596, 8615, -1640, 220, -20, 1, -360060, 974670, -960520, 456700, -133091, 25475, -3500, 350, -25, 1, 6692280, -18115800
Offset: 0
Triangle begins:
1;
-1,1;
1,-2,1;
-2,5,-4,1;
6,-16,15,-6,1;
-30,81,-79,36,-9,1;
204,-552,543,-256,72,-12,1;
-1944,5262,-5184,2461,-712,132,-16,1;
23340,-63180,62260,-29596,8615,-1640,220,-20,1;
-360060,974670,-960520,456700,-133091,25475,-3500,350,-25,1; ...
-
{T(n,k)=local(M);M=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1-(j-1)\2,j\2)*binomial(m-1-j\2,(j-1)\2))); return((M^-1)[n+1,k+1])}
A091964
Number of left factors of peakless Motzkin paths of length n.
Original entry on oeis.org
1, 2, 4, 9, 21, 50, 121, 296, 730, 1812, 4521, 11328, 28485, 71844, 181674, 460443, 1169283, 2974574, 7578937, 19337489, 49401526, 126350742, 323495259, 829033334, 2126454271, 5458711430, 14023219126, 36049991901, 92734505565
Offset: 0
a(2)=4 because we have hh, hu, uh and uu.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Enumerative Aspects, in International Conference on Language and Automata Theory and Applications, S. Klein, C. Martín-Vide, D. Shapira (eds), Springer, Cham, pp 195-206, 2018.
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Ivo L. Hofacker, Christian M. Reidys, and Peter F. Stadler, Symmetric circular matchings and RNA folding. Discr. Math., 312:100-112, 2012. See Prop. 5, C_2^{1}(z).
- Asamoah Nkwanta, Lattice paths and RNA secondary structures, DIMACS Series in Discrete Math. and Theoretical Computer Science, 34, 1997, 137-147.
- Helmut Prodinger, Cornerless, peakless, valleyless Motzkin paths (regular and skew) and applications to bargraphs, arXiv:2501.13645 [math.CO], 2025. See p. 8.
-
[(&+[Binomial(Floor((n+k)/2),k)*Binomial(Floor((n+k+1)/2),k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 26 2019
-
CoefficientList[Series[2/(1-3*x+x^2+Sqrt[1-2*x-x^2-2*x^3+x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
-
a(n)=sum(k=0,n,binomial(n-k\2,(k+1)\2)*binomial(n-(k+1)\2,k\2)) \\ Paul D. Hanna, Mar 24 2005
-
a(n)=sum(k=0,n,binomial((n+k)\2,k)*binomial((n+k+1)\2,k)) \\ Paul D. Hanna, Oct 31 2006
-
[sum(binomial(floor((n+k)/2),k)*binomial(floor((n+k+1)/2),k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 26 2019
A104557
Triangle T, read by rows, such that the unsigned columns of the matrix inverse when read downwards equals the rows of T read backwards, with T(n,n)=1 and T(n,n-1) = floor((n+1)/2)*floor((n+2)/2).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 6, 4, 1, 24, 24, 18, 6, 1, 120, 120, 96, 36, 9, 1, 720, 720, 600, 240, 72, 12, 1, 5040, 5040, 4320, 1800, 600, 120, 16, 1, 40320, 40320, 35280, 15120, 5400, 1200, 200, 20, 1, 362880, 362880, 322560, 141120, 52920, 12600, 2400, 300, 25, 1
Offset: 0
Rows of T begin:
1;
1, 1;
2, 2, 1;
6, 6, 4, 1;
24, 24, 18, 6, 1;
120, 120, 96, 36, 9, 1;
720, 720, 600, 240, 72, 12, 1;
5040, 5040, 4320, 1800, 600, 120, 16, 1;
40320, 40320, 35280, 15120, 5400, 1200, 200, 20, 1; ...
The matrix inverse A104558 begins:
1;
-1, 1;
0, -2, 1;
0, 2, -4, 1;
0, 0, 6, -6, 1;
0, 0, -6, 18, -9, 1;
0, 0, 0, -24, 36, -12, 1;
0, 0, 0, 24, -96, 72, -16, 1; ...
Original entry on oeis.org
1, -1, 1, -2, 6, -30, 204, -1944, 23340, -360060, 6692280, -151908120, 4032593040, -126425330640, 4537069829880, -187762669281600, 8751745668796200, -462088269954518760, 27132285729049971120, -1779812144439507990000, 128512316060872730854560
Offset: 0
-
{a(n)=local(M);M=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1-(j-1)\2,j\2)*binomial(m-1-j\2,(j-1)\2))); return((M^-1)[n+1,1])}
Showing 1-4 of 4 results.
Comments