cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A104560 Matrix inverse of triangle A104559, read by rows.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -2, 5, -4, 1, 6, -16, 15, -6, 1, -30, 81, -79, 36, -9, 1, 204, -552, 543, -256, 72, -12, 1, -1944, 5262, -5184, 2461, -712, 132, -16, 1, 23340, -63180, 62260, -29596, 8615, -1640, 220, -20, 1, -360060, 974670, -960520, 456700, -133091, 25475, -3500, 350, -25, 1, 6692280, -18115800
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2005

Keywords

Comments

Column 0 is A104561.

Examples

			Triangle begins:
1;
-1,1;
1,-2,1;
-2,5,-4,1;
6,-16,15,-6,1;
-30,81,-79,36,-9,1;
204,-552,543,-256,72,-12,1;
-1944,5262,-5184,2461,-712,132,-16,1;
23340,-63180,62260,-29596,8615,-1640,220,-20,1;
-360060,974670,-960520,456700,-133091,25475,-3500,350,-25,1; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(M);M=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1-(j-1)\2,j\2)*binomial(m-1-j\2,(j-1)\2))); return((M^-1)[n+1,k+1])}

A091964 Number of left factors of peakless Motzkin paths of length n.

Original entry on oeis.org

1, 2, 4, 9, 21, 50, 121, 296, 730, 1812, 4521, 11328, 28485, 71844, 181674, 460443, 1169283, 2974574, 7578937, 19337489, 49401526, 126350742, 323495259, 829033334, 2126454271, 5458711430, 14023219126, 36049991901, 92734505565
Offset: 0

Views

Author

Emeric Deutsch, Mar 13 2004

Keywords

Comments

Number of paths from (0,0) to the line x=n, consisting of steps u=(1,1), h=(1,0), d=(1,-1), that never go below the x-axis and a u step is never followed by a d step.
a(n) is also the number of peakless Motzkin paths of length n in which the (1,0)-steps at level 0 come in 2 colors. Example: a(4)=21 because, denoting u=(1,1), h=(1,0), and d=(1,-1), we have 2^4 = 16 paths of shape hhhh, 2 paths of shape huhd, 2 paths of shape uhdh, and 1 path of shape uhhd. - Emeric Deutsch, May 03 2011
Equals diagonal sums of triangle A124428. - Paul D. Hanna, Oct 31 2006

Examples

			a(2)=4 because we have hh, hu, uh and uu.
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(Floor((n+k)/2),k)*Binomial(Floor((n+k+1)/2),k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 26 2019
    
  • Mathematica
    CoefficientList[Series[2/(1-3*x+x^2+Sqrt[1-2*x-x^2-2*x^3+x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n-k\2,(k+1)\2)*binomial(n-(k+1)\2,k\2)) \\ Paul D. Hanna, Mar 24 2005
    
  • PARI
    a(n)=sum(k=0,n,binomial((n+k)\2,k)*binomial((n+k+1)\2,k)) \\ Paul D. Hanna, Oct 31 2006
    
  • Sage
    [sum(binomial(floor((n+k)/2),k)*binomial(floor((n+k+1)/2),k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 26 2019

Formula

G.f.: 2/(1 - 3*z + z^2 + sqrt(1 - 2*z - z^2 - 2*z^3 + z^4)).
a(n) = Sum_{k=0..n} C(n-floor(k/2), floor((k+1)/2)) * C(n-floor((k+1)/2), floor(k/2)). - Paul D. Hanna, Mar 24 2005
a(n) = Sum_{k=0..n} C(floor((n+k)/2),k)*C(floor((n+k+1)/2),k). - Paul D. Hanna, Oct 31 2006
G.f.: 1/(1-x-x/(1-x^2/(1-x/(1-x^2/(1-x/(1-x^2/(1-... (continued fraction). - Paul Barry, Jun 30 2009
D-finite with recurrence (n+1)*a(n) + 2*(-n-1)*a(n-1) + (-n+1)*a(n-2) + 2*(-n+3)*a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ (3+sqrt(5))^n / (sqrt(7*sqrt(5)-15) * sqrt(Pi*n) * 2^(n-1/2)). - Vaclav Kotesovec, Feb 12 2014
Equivalently, a(n) ~ phi^(2*n + 2) / (5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021

A104557 Triangle T, read by rows, such that the unsigned columns of the matrix inverse when read downwards equals the rows of T read backwards, with T(n,n)=1 and T(n,n-1) = floor((n+1)/2)*floor((n+2)/2).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 4, 1, 24, 24, 18, 6, 1, 120, 120, 96, 36, 9, 1, 720, 720, 600, 240, 72, 12, 1, 5040, 5040, 4320, 1800, 600, 120, 16, 1, 40320, 40320, 35280, 15120, 5400, 1200, 200, 20, 1, 362880, 362880, 322560, 141120, 52920, 12600, 2400, 300, 25, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2005

Keywords

Comments

Matrix inverse is A104558. Row sums form A102038. See A104559 for further formulas, where A104559(n,k) = T(n,k)/(n-k)!.

Examples

			Rows of T begin:
      1;
      1,     1;
      2,     2,     1;
      6,     6,     4,     1;
     24,    24,    18,     6,    1;
    120,   120,    96,    36,    9,    1;
    720,   720,   600,   240,   72,   12,   1;
   5040,  5040,  4320,  1800,  600,  120,  16,  1;
  40320, 40320, 35280, 15120, 5400, 1200, 200, 20, 1; ...
The matrix inverse A104558 begins:
   1;
  -1,  1;
   0, -2,  1;
   0,  2, -4,   1;
   0,  0,  6,  -6,   1;
   0,  0, -6,  18,  -9,   1;
   0,  0,  0, -24,  36, -12,   1;
   0,  0,  0,  24, -96,  72, -16, 1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=(n-k)!*binomial(n-(k\2),(k+1)\2)*binomial(n-((k+1)\2),k\2)

Formula

Formula: T(n,k) = (n-k)!*C(n-floor(k/2), floor((k+1)/2))*C(n-floor((k+1)/2), floor(k/2)).
Recurrence: T(n,k) = n*T(n-1,k) + T(n-2,k-2) for n >= k >= 2, with T(0,0) = T(1,0) = T(1,1) = 1.
T(n,0) = n!.
T(n,k) = T(n-1,k-1) + floor((k+2)/2)*T(n,k+1), T(0,0)=1, T(n,k)=0 for k > n or for k < 0. - Philippe Deléham, Dec 18 2006

A104561 Column 0 of triangle A104560.

Original entry on oeis.org

1, -1, 1, -2, 6, -30, 204, -1944, 23340, -360060, 6692280, -151908120, 4032593040, -126425330640, 4537069829880, -187762669281600, 8751745668796200, -462088269954518760, 27132285729049971120, -1779812144439507990000, 128512316060872730854560
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2005

Keywords

Comments

A104560 equals the matrix inverse of A104559, where A104559(n,k) = C(n-[k/2],[(k+1)/2])*C(n-[(k+1)/2],[k/2]).

Crossrefs

Programs

  • PARI
    {a(n)=local(M);M=matrix(n+1,n+1,m,j,if(m>=j, binomial(m-1-(j-1)\2,j\2)*binomial(m-1-j\2,(j-1)\2))); return((M^-1)[n+1,1])}
Showing 1-4 of 4 results.