A191579
Triangular array related to continued fractions of square root of (N^2 - 1) for N>1, apparently containing A004148 and summing to A091964.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 4, 6, 6, 4, 1, 8, 13, 13, 10, 5, 1, 17, 28, 30, 24, 15, 6, 1, 37, 62, 69, 59, 40, 21, 7, 1, 82, 140, 160, 144, 105, 62, 28, 8, 1, 185, 320, 375, 350, 271, 174, 91, 36, 9, 1, 423, 740, 885, 852, 690, 474, 273, 128, 45, 10, 1
Offset: 1
The triangle begins
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
4, 6, 6, 4, 1;
8, 13, 13, 10, 5, 1;
17, 28, 30, 24, 15, 6, 1;
37, 62, 69, 59, 40, 21, 7, 1;
82, 140, 160, 144, 105, 62, 28, 8, 1;
185, 320, 375, 350, 271, 174, 91, 36, 9, 1;
423, 740, 885, 852, 690, 474, 273, 128, 45, 10, 1;
...
The 4th row is 2,3,3,1 because the 2nd,4th,6th and 8th terms of columns j = 1-5 of square array T(i,j) A192062 form the 4*5 matrix {{1,3,8,21},{1,4,15,56},{1,5,24,115},{1,6,35,204},{1,7,48,329}}. Solving the resulting system of linear equations results in the identities:
2*1 + 3*3 + 3*8 + 1*21 = 56 = T(8,2) of A192062
2*1 + 3*4 + 3*15+ 1*56 = 115 = T(8,3) of A192062
2*1 + 3*5 + 3*24 + 1*115 = 204 = T(8,4) of A192062
2*1 + 3*6 + 3*35 + 1*204 = 329 = T(8,5) of A192062
A097724
Triangle read by rows: T(n,k) is the number of left factors of Motzkin paths without peaks, having length n and endpoint height k.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 4, 6, 6, 4, 1, 8, 13, 13, 10, 5, 1, 17, 28, 30, 24, 15, 6, 1, 37, 62, 69, 59, 40, 21, 7, 1, 82, 140, 160, 144, 105, 62, 28, 8, 1, 185, 320, 375, 350, 271, 174, 91, 36, 9, 1, 423, 740, 885, 852, 690, 474, 273, 128, 45, 10, 1, 978, 1728, 2102, 2077
Offset: 0
Triangle starts:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
4, 6, 6, 4, 1;
Row n has n+1 terms.
T(3,2)=3 because we have HUU, UHU and UUH, where U=(1,1) and H=(1,0).
Row 7: let u(n,x) = U(n,x/2). Then u(7,x+1) = u(7,x) + 7*u(6,x) + 21*u(5,x) + 40*u(4,x) + 59*u(3,x) + 69*u(2,x) + 62*u(1,x) + 37. - _Peter Bala_, Jun 26 2025
- Alois P. Heinz, Rows n = 0..140, flattened
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- Naiomi Cameron and Everett Sullivan, Peakless Motzkin paths with marked level steps at fixed height, Discrete Mathematics 344.1 (2021): 112154.
- Tian-Xiao He, A-sequences, Z-sequence, and B-sequences of Riordan matrices, Discrete Mathematics 343.3 (2020): 111718.
- A. Nkwanta and A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
- A. Panayotopoulos and P. Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012
-
T:=proc(n,k) if k=n then 1 else (k+1)*sum(binomial(j,n-k-j)*binomial(j+k,n+1-j)/j,j=ceil((n-k+1)/2)..n-k) fi end: seq(seq(T(n,k),k=0..n),n=0..12); T:=proc(n,k) if k=n then 1 else (k+1)*sum(binomial(j,n-k-j)*binomial(j+k,n+1-j)/j,j=ceil((n-k+1)/2)..n-k) fi end: TT:=(n,k)->T(n-1,k-1): matrix(10,10,TT); # gives the sequence as a matrix
-
T[n_, k_] := T[n, k] = If[k==n, 1, (k+1)*Sum[Binomial[j, n-k-j]*Binomial[j +k, n+1-j]/j, {j, Ceiling[(n-k+1)/2], n-k}]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)
A104559
Triangle, read by rows, of the number of left factors of peakless Motzkin paths of length n having k number of U's and D's (i.e., number of paths from (0,0) to the line x=n, consisting of steps U=(1,1), H=(1,0), D=(1,1), that never go below the x-axis and a U step is never followed by a D step).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 9, 6, 1, 1, 5, 16, 18, 9, 1, 1, 6, 25, 40, 36, 12, 1, 1, 7, 36, 75, 100, 60, 16, 1, 1, 8, 49, 126, 225, 200, 100, 20, 1, 1, 9, 64, 196, 441, 525, 400, 150, 25, 1, 1, 10, 81, 288, 784, 1176, 1225, 700, 225, 30, 1, 1, 11, 100, 405, 1296, 2352
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 9, 6, 1;
1, 5, 16, 18, 9, 1;
1, 6, 25, 40, 36, 12, 1;
1, 7, 36, 75, 100, 60, 16, 1;
1, 8, 49, 126, 225, 200, 100, 20, 1; ...
-
T:=proc(n,k) if k<=n then binomial(n-floor(k/2),floor((k+1)/2))*binomial(n-floor((k+1)/2),floor(k/2)) else 0 fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Mar 16 2005
-
T(n,k)=binomial(n-(k\2),(k+1)\2)*binomial(n-((k+1)\2),k\2)
-
{T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k));polcoeff(polcoeff( 2/(1-X+X^2*Y^2-2*X*Y+sqrt((1-X+X^2*Y^2)^2-4*X^2*Y^2)),n,x),k,y)}
A132893
Triangle read by rows: T(n,k) is the number of paths of length n with steps U=(1,1), D=(1,-1) and H=(1,0), starting at (0,0), staying weakly above the x-axis (i.e., left factors of Motzkin paths) and having k peaks (i.e., UDs), 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 2, 4, 1, 9, 4, 21, 13, 1, 50, 40, 6, 121, 118, 27, 1, 296, 340, 106, 8, 730, 965, 381, 46, 1, 1812, 2708, 1296, 220, 10, 4521, 7535, 4241, 935, 70, 1, 11328, 20828, 13482, 3676, 395, 12, 28485, 57266, 41916, 13658, 1940, 99, 1
Offset: 0
T(3,1)=4 because we have HUD, UDH, UDU and UUD.
Triangle starts:
1;
2;
4, 1;
9, 4;
21, 13, 1;
50, 40, 6;
121, 118, 27, 1;
-
G:=((-1+3*z-z^2+t*z^2+sqrt((1+z+z^2-t*z^2)*(1-3*z+z^2-t*z^2)))*1/2)/(z*(1-3*z+z^2-t*z^2)): Gser:=simplify(series(G,z=0,15)): for n from 0 to 12 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 12 do seq(coeff(P[n],t,j), j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y, t) option remember; expand(`if`(y<0, 0,
`if`(x=0, 1, b(x-1, y, 1)+b(x-1, y-1, 1)*t+b(x-1, y+1, z))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Feb 01 2019
-
b[x_, y_, t_] := b[x, y, t] = Expand[If[y < 0, 0, If[x == 0, 1, b[x - 1, y, 1] + b[x - 1, y - 1, 1]*t + b[x - 1, y + 1, z]]]];
T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]] @ b[n, 0, 1];
T /@ Range[0, 15] // Flatten (* Jean-François Alcover, Oct 06 2019, after Alois P. Heinz *)
A355043
Expansion of the continued fraction 1 / (1-q-q^2 / (1-q-q^2-q^3 / (1-q-q^2-q^3-q^4 / (...)))).
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 50, 121, 296, 730, 1811, 4513, 11285, 28294, 71088, 178904, 450840, 1137345, 2871720, 7256093, 18345060, 46403039, 117421762, 297232446, 752601692, 1906056161, 4828267801, 12232594912, 30996034963, 78549710061, 199079279640, 504596195477, 1279065489044
Offset: 0
-
nmax = 40; CoefficientList[Series[1/(1 - x - x^2/(1 - x - x^2 + ContinuedFractionK[-x^k, 1 - x*(1 - x^k)/(1 - x), {k, 3, nmax}])), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 16 2022 *)
-
N=44; q='q+O('q^N);
f(n) = 1 - sum(k=1,n-1,q^k);
s=1; forstep(j=N, 2, -1, s = q^j/s; s = f(j) - s ); s = 1/s;
Vec(s)
A325917
Number of Motzkin meanders of length n with an even number of humps and without peaks.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 65, 136, 298, 691, 1694, 4340, 11433, 30510, 81592, 217238, 573970, 1503296, 3904181, 10065079, 25796324, 65837541, 167602092, 426213784, 1084095329, 2760717190, 7043305930, 18008810836, 46151503544, 118529776510, 304998080821
Offset: 0
For n=0..5 we have a(n)=2^n because for these values we have only the humpless paths {U, H}^n. For n=6, the only "extra" path is UHDUHD. For n=7, the eight "extra" paths are UHDUHHD, UHHDUHD, UHDUHDH, UHDUHDU, UHDHUHD, UHDUUHD, HUHDUHD, UUHDUHD.
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Algorithmica (2019).
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Asymptotic Aspects and Borges's Theorem, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018).
-
CoefficientList[Series[(1/4)*(x^3 - 4*x^2 + 4*x - 1 + Sqrt[x^6 - 4*x^5 + 4*x^4 - 2*x^3 + 4*x^2 - 4*x + 1])/((-x^3 + 4*x^2 - 4*x + 1)*x) + (1/4)*(-x^3 - 4*x^2 + 4*x - 1 + Sqrt[x^6 + 4*x^5 - 4*x^4 + 2*x^3 + 4*x^2 - 4*x + 1])/((x^3 + 4*x^2 - 4*x + 1)*x), {x, 0, 40}], x] (* Vaclav Kotesovec, Jun 05 2019 *)
Showing 1-6 of 6 results.
Comments