cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097724 Triangle read by rows: T(n,k) is the number of left factors of Motzkin paths without peaks, having length n and endpoint height k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 4, 6, 6, 4, 1, 8, 13, 13, 10, 5, 1, 17, 28, 30, 24, 15, 6, 1, 37, 62, 69, 59, 40, 21, 7, 1, 82, 140, 160, 144, 105, 62, 28, 8, 1, 185, 320, 375, 350, 271, 174, 91, 36, 9, 1, 423, 740, 885, 852, 690, 474, 273, 128, 45, 10, 1, 978, 1728, 2102, 2077
Offset: 0

Views

Author

Emeric Deutsch, Sep 11 2004

Keywords

Comments

Column 0 is A004148 (RNA secondary structure numbers).
This triangle appears identical to A191579 (apart from offsets). - Philippe Deléham, Jan 26 2014
Conjecture: the row reverse triangle is the triangle of connection constants for expressing the polynomial u(n,x+1) as a linear combination of the polynomials u(k,x), 0 <= k <= n, where u(n,x) = U(n,x/2) with U(n,x) the n-th Chebyshev polynomial of the second kind. An example is given below. Cf. A205810. - Peter Bala, Jun 26 2025

Examples

			Triangle starts:
  1;
  1, 1;
  1, 2, 1;
  2, 3, 3, 1;
  4, 6, 6, 4, 1;
Row n has n+1 terms.
T(3,2)=3 because we have HUU, UHU and UUH, where U=(1,1) and H=(1,0).
Row 7: let u(n,x) = U(n,x/2). Then u(7,x+1) = u(7,x) + 7*u(6,x) + 21*u(5,x) + 40*u(4,x) + 59*u(3,x) + 69*u(2,x) + 62*u(1,x) + 37. - _Peter Bala_, Jun 26 2025
		

Crossrefs

Cf. A004148, A191579, A091964 (row sums), A205810.

Programs

  • Maple
    T:=proc(n,k) if k=n then 1 else (k+1)*sum(binomial(j,n-k-j)*binomial(j+k,n+1-j)/j,j=ceil((n-k+1)/2)..n-k) fi end: seq(seq(T(n,k),k=0..n),n=0..12); T:=proc(n,k) if k=n then 1 else (k+1)*sum(binomial(j,n-k-j)*binomial(j+k,n+1-j)/j,j=ceil((n-k+1)/2)..n-k) fi end: TT:=(n,k)->T(n-1,k-1): matrix(10,10,TT); # gives the sequence as a matrix
  • Mathematica
    T[n_, k_] := T[n, k] = If[k==n, 1, (k+1)*Sum[Binomial[j, n-k-j]*Binomial[j +k, n+1-j]/j, {j, Ceiling[(n-k+1)/2], n-k}]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 22 2017, translated from Maple *)

Formula

T(n,k) = (k+1)*Sum_{j=ceiling((n-k+1)/2)..n-k} (C(j,n-k-j)*C(j+k,n+1-j)/j) for 0 <= k < n; T(n,n)=1.
G.f.: G/(1-tzG), where G = (1 - z + z^2 - sqrt(1 - 2z - z^2 - 2z^3 + z^4))/(2z^2) is the g.f. for the sequence A004148.
T(n,k) = T(n-1,k-1) + Sum_{j>=0} T(n-1-j,k+j), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 26 2014
Sum_{j=0..n-1} cos(2*Pi*k/3 + Pi/6)*T(n,k) = cos(Pi*n/2)*sqrt(3)/2 - cos(2*Pi*n/3 + Pi/6). - Leonid Bedratyuk, Dec 06 2017

A192062 Square Array T(ij) read by antidiagonals (from NE to SW) with columns 2j being the denominators of continued fraction convergents to square root of (j^2 + 2j).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 4, 5, 3, 0, 1, 1, 5, 5, 11, 8, 1, 0, 1, 1, 6, 6, 19, 15, 13, 4, 0, 1, 1, 7, 7, 29, 24, 41, 21, 1, 0, 1, 1, 8, 8, 41, 35, 91, 56, 34, 5, 0, 1, 1, 9, 9, 55, 48, 169, 115, 153, 55, 1, 0, 1, 1, 10, 10, 71, 63, 281, 204, 436, 209, 89, 6
Offset: 0

Views

Author

Kenneth J Ramsey, Jun 21 2011

Keywords

Comments

Column j=1 is the Fibonacci sequence A000045. Column 2 is A002530; column 4 is A041011; column 6 is A041023; column 8 is A041039, column 10 is A041059, column 12 is A041083, column 14 is A041111 corresponding the denominators of continued fraction convergents to square root of 3,8,15,24,35,48 and 63.
T(2*i-1,j)*T(2*i,j)^2*T(2*i+1,j)*j/2 appears to be always a triangular number, T(j*T(2*i,j)^2).
T(2*i,j)*T(2*i+1,j)^2*T(2*i+2)*j/2 appears to always equal a triangular number, T(j*T(2*i,j)*T(2*i+2,j)).
Conjecture re relation of A192062 to the sequence of primes: T(2*n,j) = A(n,j)*T(n,j) where A(n,j) is from the square array A191971. There, A(3*n,j) = A(n,j)*B(n,j) where B(n,j) are integers. It appears further that B(5*n,j)=B(n,j)*C(n,j); C(7*n,j)= C(n,j)*D(n,j); D(11*n,j) = D(n,j)*E(n,j); E(13*n,j) = E(n,j)*F(n,j) and F(17*n,j) = F(n,j)*G(n,j) where C(n,j), D(n,j) etc. are all integers. My conjecture is that this property continues indefinitely and follows the sequence of primes.

Examples

			Array as meant by the definition
First column has index j=0
0  0  0   0   0   0   0 ...
1  1  1   1   1   1   1 ...
1  1  1   1   1   1   1 ...
1  2  3   4   5   6   7 ...
2  3  4   5   6   7   8 ...
1  5 11  19  29  41  55 ...
3  8 15  24  35  48  63 ...
1 13 41  91 169 281 433 ...
4 21 56 115 204 329 496 ...
.
.
.
		

Crossrefs

Formula

Each column j is a recursive sequence defined by T(0,j)=0, T(1,j) = 1, T(2i,j)= T(2i-2,j)+T(2i-1,j) and T(2i+1,j) = T(2i-1,j)+j*T(2i,j). Also, T(n+2,j) = (j+2)*T(n,j)-T(n-2,j).
T(2n,j) = Sum(k=1 to n) C(k)*T(2*k,j-1) where the C(k) are the n-th row of the triangle A191579.
T(2*i,j) = T(i,j)*A(i,j) where A(i,j) is from the table A(i,j) of A191971.
T(4*i,j) = (T(2*i+1)^2 - T(2*i-1)^2)/j
T(4*i+2,j) = T(2*i+2,j)^2 - T(2*i,j)^2

Extensions

Corrected and edited by Olivier Gérard, Jul 05 2011
Showing 1-2 of 2 results.