A104562 Inverse of the Motzkin triangle A064189.
1, -1, 1, 0, -2, 1, 1, 1, -3, 1, -1, 2, 3, -4, 1, 0, -4, 2, 6, -5, 1, 1, 2, -9, 0, 10, -6, 1, -1, 3, 9, -15, -5, 15, -7, 1, 0, -6, 3, 24, -20, -14, 21, -8, 1, 1, 3, -18, -6, 49, -21, -28, 28, -9, 1, -1, 4, 18, -36, -35, 84, -14, -48, 36, -10, 1, 0, -8, 4, 60, -50, -98, 126, 6, -75, 45, -11, 1, 1, 4, -30, -20, 145, -36, -210, 168, 45, -110, 55, -12, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] -1, 1; [2] 0, -2, 1; [3] 1, 1, -3, 1; [4] -1, 2, 3, -4, 1; [5] 0, -4, 2, 6, -5, 1; [6] 1, 2, -9, 0, 10, -6, 1; [7] -1, 3, 9, -15, -5, 15, -7, 1; [8] 0, -6, 3, 24, -20, -14, 21, -8, 1; [9] 1, 3, -18, -6, 49, -21, -28, 28, -9, 1. ... From _Philippe Deléham_, Jan 27 2010: (Start) Triangle [0,-1,1,-1,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] begins: 1; 0, 1; 0, -1, 1; 0, 0, -2, 1; 0, 1, 1, -3, 1; 0, -1, 2, 3, -4, 1; ... (End)
References
- Anthony Ralston and Philip Rabinowitz, A First Course in Numerical Analysis, 1978, ISBN 0070511586, see p. 256.
Links
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2.
- Jonathan L. Gross, Toufik Mansour, Thomas W. Tucker, and David G. L. Wang, Root geometry of polynomial sequences. II: Type (1,0), J. Math. Anal. Appl. 441, No. 2, 499-528 (2016).
- A. Luzón, D. Merlini, M. A. Morón, and R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
Programs
-
Maple
with(linalg): m:=proc(i,j) if abs(i-j)<=1 then 1 else 0 fi end: T:=(n,k)->coeff(charpoly(matrix(n,n,m),x),x,k): 1; for n from 1 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Alternatively: T := (n,k) -> `if`(n=0,1,(-1)^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], 4)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016
-
Mathematica
nmax = 12; M[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k-n)/2, (k-n+1)/2, k+2, 4]; invM = Inverse@Table[M[n, k], {n, 0, nmax}, {k, 0, nmax}]; T[n_, k_] := invM[[n+1, k+1]]; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 15 2023 *)
-
Sage
@CachedFunction def A104562(n,k): if n< 0: return 0 if n==0: return 1 if k == 0 else 0 return A104562(n-1,k-1)-A104562(n-2,k)-A104562(n-1,k) for n in (0..9): [A104562(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
-
Sage
# Alternatively as coefficients of polynomials: def S(n,x): if n==0: return 1 if n==1: return x-1 return (x-1)*S(n-1,x)-S(n-2,x) for n in (0..7): print(S(n,x).list()) # Peter Luschny, Jun 23 2015
Formula
T(n, k) = Sum_{j=0..n} (-1)^(k-j)*(-1)^((n-j)/2) C((n+j)/2, j)(1+(-1)^(n+j))C(j, k)/2.
T(n,k) = (-1)^(n-k)*A101950(n,k). - Philippe Deléham, Feb 19 2012
T(n,k) = T(n-1,k-1) - T(n-1,k) - T(n-2,l). - Philippe Deléham, Feb 19 2012
G.f.: 1/(1+x+x^2-y*x). - Philippe Deléham, Feb 19 2012
T(n, k) = (-1)^(n - k)*C(n, k)*hypergeom([(k - n)/2, (k - n + 1)/2], [-n], 4) for n >= 1. - Peter Luschny, Apr 25 2016
Extensions
Edited by N. J. A. Sloane, Apr 10 2008
Typo correction in the Roger L. Bagula comment and Mathematica section by Wolfdieter Lang, Nov 22 2011
Comments