cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104562 Inverse of the Motzkin triangle A064189.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 1, 1, -3, 1, -1, 2, 3, -4, 1, 0, -4, 2, 6, -5, 1, 1, 2, -9, 0, 10, -6, 1, -1, 3, 9, -15, -5, 15, -7, 1, 0, -6, 3, 24, -20, -14, 21, -8, 1, 1, 3, -18, -6, 49, -21, -28, 28, -9, 1, -1, 4, 18, -36, -35, 84, -14, -48, 36, -10, 1, 0, -8, 4, 60, -50, -98, 126, 6, -75, 45, -11, 1, 1, 4, -30, -20, 145, -36, -210, 168, 45, -110, 55, -12, 1
Offset: 0

Views

Author

Paul Barry, Mar 15 2005

Keywords

Comments

Or, triangle read by rows: T(0, 0) = 1; for n >= 1 T(n, k) is the coefficient of x^k in the monic characteristic polynomial of the n X n tridiagonal matrix with 1's on the main, sub- and superdiagonal (0 <= k <= n). The characteristic polynomial has a root 1 + 2*cos(Pi/(n + 1)). - Gary W. Adamson, Nov 19 2006
Row sums have g.f. 1/(1 + x^2); diagonal sums are (-1)^n. Riordan array (1/(1 + x + x^2), x/(1 + x + x^2)).
Or, triangle read by rows in which row n gives coefficients of characteristic polynomial of the n X n tridiagonal matrix with 1's on the main diagonal and -1's on the two adjacent diagonals. For example: M(3) = {{1, -1, 0}, {-1, 1, -1}, {0, -1, 1}}. - Roger L. Bagula, Mar 15 2008
Subtriangle of the triangle given by [0,-1,1,-1,0,0,0,0,0,0,0,...) DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 27 2010
Triangle of coefficients of Chebyshev's S(n, x-1) polynomials (exponents of x in increasing order). - Philippe Deléham, Feb 19 2012

Examples

			Triangle starts:
  [0]  1;
  [1] -1,  1;
  [2]  0, -2,   1;
  [3]  1,  1,  -3,   1;
  [4] -1,  2,   3,  -4,   1;
  [5]  0, -4,   2,   6,  -5,   1;
  [6]  1,  2,  -9,   0,  10,  -6,   1;
  [7] -1,  3,   9, -15,  -5,  15,  -7,  1;
  [8]  0, -6,   3,  24, -20, -14,  21, -8,  1;
  [9]  1,  3, -18,  -6,  49, -21, -28, 28, -9, 1.
  ...
From _Philippe Deléham_, Jan 27 2010: (Start)
Triangle [0,-1,1,-1,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] begins:
  1;
  0,  1;
  0, -1,  1;
  0,  0, -2,  1;
  0,  1,  1, -3,  1;
  0, -1,  2,  3, -4,  1;
  ... (End)
		

References

  • Anthony Ralston and Philip Rabinowitz, A First Course in Numerical Analysis, 1978, ISBN 0070511586, see p. 256.

Crossrefs

Apart from signs identical to A101950.
Cf. A125090.

Programs

  • Maple
    with(linalg): m:=proc(i,j) if abs(i-j)<=1 then 1 else 0 fi end: T:=(n,k)->coeff(charpoly(matrix(n,n,m),x),x,k): 1; for n from 1 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
    # Alternatively:
    T := (n,k) -> `if`(n=0,1,(-1)^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], 4)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016
  • Mathematica
    nmax = 12;
    M[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k-n)/2, (k-n+1)/2, k+2, 4];
    invM = Inverse@Table[M[n, k], {n, 0, nmax}, {k, 0, nmax}];
    T[n_, k_] := invM[[n+1, k+1]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 15 2023 *)
  • Sage
    @CachedFunction
    def A104562(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A104562(n-1,k-1)-A104562(n-2,k)-A104562(n-1,k)
    for n in (0..9): [A104562(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    
  • Sage
    # Alternatively as coefficients of polynomials:
    def S(n,x):
        if n==0: return 1
        if n==1: return x-1
        return (x-1)*S(n-1,x)-S(n-2,x)
    for n in (0..7): print(S(n,x).list()) # Peter Luschny, Jun 23 2015

Formula

T(n, k) = Sum_{j=0..n} (-1)^(k-j)*(-1)^((n-j)/2) C((n+j)/2, j)(1+(-1)^(n+j))C(j, k)/2.
T(n,k) = (-1)^(n-k)*A101950(n,k). - Philippe Deléham, Feb 19 2012
T(n,k) = T(n-1,k-1) - T(n-1,k) - T(n-2,l). - Philippe Deléham, Feb 19 2012
A104562*A007318 = A049310 as infinite lower triangular matrices. - Philippe Deléham, Feb 19 2012
G.f.: 1/(1+x+x^2-y*x). - Philippe Deléham, Feb 19 2012
T(n, k) = (-1)^(n - k)*C(n, k)*hypergeom([(k - n)/2, (k - n + 1)/2], [-n], 4) for n >= 1. - Peter Luschny, Apr 25 2016

Extensions

Edited by N. J. A. Sloane, Apr 10 2008
Typo correction in the Roger L. Bagula comment and Mathematica section by Wolfdieter Lang, Nov 22 2011