A104580 Tribonacci convolution triangle.
1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 7, 12, 9, 4, 1, 13, 26, 25, 14, 5, 1, 24, 56, 63, 44, 20, 6, 1, 44, 118, 153, 125, 70, 27, 7, 1, 81, 244, 359, 336, 220, 104, 35, 8, 1, 149, 499, 819, 864, 646, 357, 147, 44, 9, 1, 274, 1010, 1830, 2144, 1800, 1134, 546, 200, 54, 10, 1
Offset: 0
Examples
Rows begin {1}, {1,1}, {2,2,1}, {4,5,3,1}, {7,12,9,4,1}, ...
Programs
-
Maple
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left. PMatrix(10, n -> A000073(n+1)); # Peter Luschny, Oct 19 2022
-
Maxima
trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k); create_list(sum(binomial(i+k,k)*trinomial(i,n-k-i),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 15 2011 */
Formula
Riordan array (1/(1-x-x^2-x^3), x/(1-x-x^2-x^3)).
From Paul Barry, Jun 02 2009: (Start)
T(n,m) = T'(n-1,m-1) + T'(n-1,m) + T'(n-2,m) + T'(n-3,m), where T'(n,m) = T(n,m) for n >= 0 and 0 <= m <= n and T'(n,m) = 0 otherwise. (End)
T(n,k) = Sum_{i=0..n-k} binomial(i+k,k)*A027907(i,n-k-i). - Emanuele Munarini, Mar 15 2011