cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104580 Tribonacci convolution triangle.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 7, 12, 9, 4, 1, 13, 26, 25, 14, 5, 1, 24, 56, 63, 44, 20, 6, 1, 44, 118, 153, 125, 70, 27, 7, 1, 81, 244, 359, 336, 220, 104, 35, 8, 1, 149, 499, 819, 864, 646, 357, 147, 44, 9, 1, 274, 1010, 1830, 2144, 1800, 1134, 546, 200, 54, 10, 1
Offset: 0

Views

Author

Paul Barry, Mar 16 2005

Keywords

Examples

			Rows begin
  {1},
  {1,1},
  {2,2,1},
  {4,5,3,1},
  {7,12,9,4,1},
   ...
		

Crossrefs

First column is A000073(n+2). Row sums are A077939. Diagonal sums are A002478.

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> A000073(n+1)); # Peter Luschny, Oct 19 2022
  • Maxima
    trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);
    create_list(sum(binomial(i+k,k)*trinomial(i,n-k-i),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 15 2011 */

Formula

Riordan array (1/(1-x-x^2-x^3), x/(1-x-x^2-x^3)).
From Paul Barry, Jun 02 2009: (Start)
T(n,m) = T'(n-1,m-1) + T'(n-1,m) + T'(n-2,m) + T'(n-3,m), where T'(n,m) = T(n,m) for n >= 0 and 0 <= m <= n and T'(n,m) = 0 otherwise. (End)
T(n,k) = Sum_{i=0..n-k} binomial(i+k,k)*A027907(i,n-k-i). - Emanuele Munarini, Mar 15 2011