A187889
Riordan matrix (1/(1-x-x^2-x^3),(x+x^2+x^3)/(1-x-x^2-x^3)).
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 7, 19, 18, 7, 1, 13, 43, 54, 32, 9, 1, 24, 94, 147, 117, 50, 11, 1, 44, 200, 375, 375, 216, 72, 13, 1, 81, 418, 913, 1100, 799, 359, 98, 15, 1, 149, 861, 2147, 3027, 2657, 1507, 554, 128, 17, 1, 274, 1753, 4914, 7937, 8174, 5610, 2603, 809, 162, 19, 1
Offset: 0
Triangle begins:
1
1,1
2,3,1
4,8,5,1
7,19,18,7,1
13,43,54,32,9,1
24,94,147,117,50,11,1
44,200,375,375,216,72,13,1
81,418,913,1100,799,359,98,15,1
-
(* Function RiordanSquare defined in A321620. *)
RiordanSquare[1/(1 - x - x^2- x^3), 11] // Flatten (* Peter Luschny, Nov 27 2018 *)
-
trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);
create_list(sum(binomial(i+k,k)*trinomial(i+k,n-k-i),i,0,n-k),n,0,8,k,0,n);
A202193
Triangle read by rows: T(n,m) = coefficient of x^n in expansion of (x/(1 - x - x^2 - x^3 - x^4))^m.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 12, 9, 4, 1, 15, 28, 25, 14, 5, 1, 29, 62, 66, 44, 20, 6, 1, 56, 136, 165, 129, 70, 27, 7, 1, 108, 294, 401, 356, 225, 104, 35, 8, 1, 208, 628, 951, 944, 676, 363, 147, 44, 9, 1, 401, 1328, 2211, 2424, 1935, 1176, 553, 200, 54, 10, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 2, 1;
4, 5, 3, 1;
8, 12, 9, 4, 1;
15, 28, 25, 14, 5, 1;
29, 62, 66, 44, 20, 6, 1;
-
T(n,m):=if n=m then 1 else sum(sum((-1)^i*binomial(k,k-i)*binomial(n-m-4*i-1,k-1),i,0,(n-m-k)/4)*binomial(k+m-1,m-1),k,1,n-m);
A189187
Riordan matrix (1/(1-x-x^2-x^3),(x+x^2)/(1-x-x^2-x^3)).
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 4, 7, 5, 1, 7, 17, 16, 7, 1, 13, 38, 46, 29, 9, 1, 24, 82, 122, 99, 46, 11, 1, 44, 174, 304, 303, 184, 67, 13, 1, 81, 362, 728, 857, 641, 309, 92, 15, 1, 149, 743, 1690, 2291, 2031, 1212, 482, 121, 17, 1, 274, 1509, 3827, 5869, 6004, 4260, 2108, 711, 154, 19, 1
Offset: 0
Triangle begins:
1
1,1
2,3,1
4,7,5,1
7,17,16,7,1
13,38,46,29,9,1
24,82,122,99,46,11,1
44,174,304,303,184,67,13,1
81,362,728,857,641,309,92,15,1
-
Flatten[Table[Sum[Binomial[i+k,k]Sum[Binomial[i+k,j]Binomial[n-i-j,i+k],{j,0,n-k-2i}],{i,0,n}],{n,0,20},{k,0,n}]]
-
create_list(sum(binomial(i+k,k)*sum(binomial(i+k,j)*binomial(n-i-j,i+k),j,0,n-k-2*i),i,0,n),n,0,8,k,0,n);
a(23) and a(40) corrected by
Georg Fischer, Feb 20 2021 and Apr 29 2022
Showing 1-3 of 3 results.
Comments