A104589 a(1)=1. a(n) = a(n-1) + (sum of terms, from among terms a(1) through a(n-1), which are prime or 1).
1, 2, 5, 13, 34, 55, 76, 97, 215, 333, 451, 569, 1256, 1943, 2630, 3317, 4004, 4691, 10069, 25516, 40963, 56410, 71857, 87304, 102751, 118198, 133645, 149092, 164539, 179986, 195433, 210880, 226327, 241774, 257221, 529889, 802557, 1075225
Offset: 1
Keywords
Examples
The noncomposites among the first 8 terms of the sequence are 1, 2, 5, 13 and 97. The sum of these is 1+2+5+13+97 = 118. So a(9) = a(8) + 118 = 215.
Links
- Michel Marcus, Table of n, a(n) for n = 1..2000
Crossrefs
Cf. A008578.
Programs
-
Mathematica
f[lst_] := Append[lst, Last@ lst + Plus @@ Select[lst, (PrimeQ@ # || # == 1) &]]; Nest[f, {1}, 38] (* Robert G. Wilson v, Jul 02 2007 *)
-
PARI
lista(nn) = my(va = vector(nn), s = 1); va[1] = 1; for (n=2, nn, va[n] = va[n-1] + s; if (isprime(va[n]), s += va[n]);); va; \\ Michel Marcus, Jul 21 2022
-
Python
from sympy import isprime from itertools import islice def A104589_gen(): # generator of terms a, b = 1, 1 while True: yield a a += b b += a if isprime(a) else 0 A104589_list = list(islice(A104589_gen(),50)) # Chai Wah Wu, Jun 03 2024
Formula
a(n) = 3*a(n-1) - a(n-2) if a(n-1) is prime, else a(n) = 2*a(n-1) - a(n-2) for n>3. - John Tyler Rascoe, Jul 20 2022
Extensions
More terms from Robert G. Wilson v, Jul 02 2007
Comments