A104605 Triangle read by rows: row n gives list of powers of phi in the representation of the integer n as a sum of increasing nonconsecutive powers of the golden ratio.
0, -2, 1, -2, 2, -2, 0, 2, -4, -1, 3, -4, 1, 3, -4, 4, -4, 0, 4, -4, -2, 1, 4, -4, -2, 2, 4, -4, -2, 0, 2, 4, -6, -3, -1, 5, -6, -3, 1, 5, -6, -3, 2, 5, -6, -3, 0, 2, 5, -6, -1, 3, 5, -6, 1, 3, 5, -6, 6, -6, 0, 6, -6, -2, 1, 6, -6, -2, 2, 6, -6, -2, 0, 2, 6, -6, -4, -1, 3, 6, -6, -4, 1, 3, 6, -6, -4, 4, 6, -6, -4, 0, 4, 6, -6, -4, -2, 1, 4, 6, -6, -4
Offset: 1
Examples
0 -2 1 -2 2 -2 0 2 -4 -1 3 -4 1 3 -4 4 -4 0 4 ... phi^0, phi^(-2) + phi, phi^(-2) + phi^2, phi^(-2) + phi^0 + phi^2, ...
Links
- T. D. Noe, Rows n = 1..1000, flattened
- Dale Gerdemann, Combinatorial proofs of Zeckendorf family identities, Fib. Quart. 46/47 (2009) 249.
- Eric Weisstein's World of Mathematics, Phi Number System
Programs
-
Mathematica
nn = 100; len = 2*Ceiling[Log[GoldenRatio, nn]]; Table[d = RealDigits[n, GoldenRatio, len]; Reverse[d[[2]] - Flatten[Position[d[[1]], 1]]], {n, nn}] (* T. D. Noe, May 20 2011 *)
Comments