cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104670 a(n) = binomial(n+2, 2)*binomial(n+7, n).

Original entry on oeis.org

1, 24, 216, 1200, 4950, 16632, 48048, 123552, 289575, 629200, 1283568, 2482272, 4585308, 8139600, 13953600, 23193984, 37509021, 59183784, 91333000, 138138000, 205134930, 299562120, 430775280, 610740000, 854611875, 1181415456, 1614834144, 2184124096, 2925166200
Offset: 0

Views

Author

Zerinvary Lajos, Apr 22 2005

Keywords

Examples

			If n=0 then C(2+0,2)*C(7+0,0+0) = C(2,2)*C(7,0) = 1*1 = 1;
if n=6 then C(2+6,2)*C(7+6,0+6) = C(8,2)*C(13,6) = 28*1716 = 48048.
		

Crossrefs

Programs

  • Magma
    A104670:= func< n | Binomial(n+2,n)*Binomial(n+7,n) >;
    [A104670(n): n in [0..30]]; // G. C. Greubel, Mar 01 2025
    
  • Maple
    [seq(stirling2(n+1,n)*binomial(n+6,7),n=1..25)]; # Zerinvary Lajos, Dec 06 2006
  • Mathematica
    a[n_] := Binomial[n + 2, 2] * Binomial[n + 7, 7]; Array[a, 25, 0] (* Amiram Eldar, Aug 30 2022 *)
  • SageMath
    def A104670(n): return binomial(n+2,n)*binomial(n+7,n)
    print([A104670(n) for n in range(31)]) # G. C. Greubel, Mar 01 2025

Formula

G.f.: (1 + 14*x + 21*x^2)/(1-x)^10. - Colin Barker, Mar 18 2012
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 49*Pi^2/3 - 288281/1800.
Sum_{n>=0} (-1)^n/a(n) = 448*log(2)/3 - 35*Pi^2/6 - 1799/40. (End)

Extensions

Corrected and extended by Don Reble, Nov 21 2006