cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104677 a(n) = binomial(n+3,3)*binomial(n+8,3).

Original entry on oeis.org

56, 336, 1200, 3300, 7700, 16016, 30576, 54600, 92400, 149600, 233376, 352716, 518700, 744800, 1047200, 1445136, 1961256, 2622000, 3458000, 4504500, 5801796, 7395696, 9338000, 11687000, 14508000, 17873856, 21865536, 26572700, 32094300, 38539200, 46026816
Offset: 0

Views

Author

Zerinvary Lajos, Apr 22 2005

Keywords

Examples

			If n=0 then C(0+3,0+0)*C(0+8,3) = C(3,0)*C(8,3) = 1*56 = 56.
If n=8 then C(8+3,8+0)*C(8+8,3) = C(11,8)*C(16,3) = 165*560 = 92400.
		

Crossrefs

Programs

  • Mathematica
    a[n_] :=  Binomial[n+3, 3] * Binomial[n+8, 3]; Array[a, 30, 0] (* Amiram Eldar, Aug 30 2022 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{56,336,1200,3300,7700,16016,30576},40] (* Harvey P. Dale, Jan 06 2023 *)

Formula

From R. J. Mathar, Nov 29 2015: (Start)
a(n) = A000292(n+1)*A000292(n+6) = 4*A033276(n+6).
G.f.: 4*(-14+14*x-6*x^2+x^3)/(x-1)^7. (End)
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 109/4900.
Sum_{n>=0} (-1)^n/a(n) = 48*log(2)/35 - 2291/2450. (End)