A104677 a(n) = binomial(n+3,3)*binomial(n+8,3).
56, 336, 1200, 3300, 7700, 16016, 30576, 54600, 92400, 149600, 233376, 352716, 518700, 744800, 1047200, 1445136, 1961256, 2622000, 3458000, 4504500, 5801796, 7395696, 9338000, 11687000, 14508000, 17873856, 21865536, 26572700, 32094300, 38539200, 46026816
Offset: 0
Examples
If n=0 then C(0+3,0+0)*C(0+8,3) = C(3,0)*C(8,3) = 1*56 = 56. If n=8 then C(8+3,8+0)*C(8+8,3) = C(11,8)*C(16,3) = 165*560 = 92400.
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
a[n_] := Binomial[n+3, 3] * Binomial[n+8, 3]; Array[a, 30, 0] (* Amiram Eldar, Aug 30 2022 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{56,336,1200,3300,7700,16016,30576},40] (* Harvey P. Dale, Jan 06 2023 *)
Formula
From R. J. Mathar, Nov 29 2015: (Start)
G.f.: 4*(-14+14*x-6*x^2+x^3)/(x-1)^7. (End)
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 109/4900.
Sum_{n>=0} (-1)^n/a(n) = 48*log(2)/35 - 2291/2450. (End)