cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104706 First terms in the rearrangements of integer numbers (see comments).

Original entry on oeis.org

1, 2, 3, 1, 4, 5, 1, 2, 6, 1, 7, 3, 1, 2, 8, 1, 9, 4, 1, 2, 10, 1, 3, 11, 1, 2, 5, 1, 12, 13, 1, 2, 3, 1, 4, 6, 1, 2, 14, 1, 15, 3, 1, 2, 7, 1, 5, 4, 1, 2, 16, 1, 3, 17, 1, 2, 8, 1, 18, 6, 1, 2, 3, 1, 4, 19, 1, 2, 5, 1, 9, 3, 1, 2, 20, 1, 21, 4, 1, 2, 7, 1, 3, 10, 1, 2, 22, 1, 5, 6, 1, 2, 3, 1, 4, 23, 1
Offset: 1

Views

Author

Zak Seidov, Mar 19 2005

Keywords

Comments

Take the sequence of natural numbers:
s0=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
Move the first term s(1)=1 to 2*1 places to the right:
s1=2,3,1,4,5,6,7,8,9,10,11,12,13,14,15,16,
Move the first term s(1)=2 to 2*2 places to the right:
s2=3,1,4,5,2,6,7,8,9,10,11,12,13,14,15,16,
Repeating the procedure we get successively:
s3=1,4,5,2,6,7,3,8,9,10,11,12,13,14,15,16,
s4=4,5,1,2,6,7,3,8,9,10,11,12,13,14,15,16,
s5=5,1,2,6,7,3,8,9,4,10,11,12,13,14,15,16,
s6=1,2,6,7,3,8,9,4,10,11,5,12,13,14,15,16,
.......................................................................
s100=8,3,1,2,24,25,4,5,12,7,6,26,9,27,13,28,29,10,14,30,31,15,11,
32,33,16,34,35,17,36,37,18,38,39,19,40,41,20,42,43,21,44,45,22,
46,47,23,48,49,50,51,52,53,54,55,56,57,58,59,60,
The sequence A104706 gives the first terms in the rearrangements s0,s1,s2,...,s100. Cf. A104705

Crossrefs

Programs

  • Maple
    A104706:= proc(N) # to produce a(1) .. a(N)
        local A, R, n,M;
        M:= N;
        R:= $1..M;
        A[1]:= 1;
        for n from 2 to N do
           if 2*R[1]+1 > M then
             R:= R, [$M+1..M+N]
           fi;
           R:= R[2..2*R[1]+1],R[1],R[2*R[1]+2..N];
           A[n]:= R[1];
        od:
        seq(A[n], n=1..N);
    end proc:
    A104706(100); # Robert Israel, Dec 04 2015
  • Mathematica
    s=Range[100];bb={1};Do[s=Drop[Insert[s, s[[1]], 2+2s[[1]]], 1];bb=Append[bb, s[[1]]], {i, 100}];bb
    NestList[Rest[Insert[#, #[[1]], 2 + 2 #[[1]]]] &, Range[30], 30][[All, 1]] (* Birkas Gyorgy, Mar 03 2011 *)
  • Sage
    def A104706(n):
        m, N = 2, 2*n-1
        while true:
            if m.divides(N): return m-2
            N = N*(m-1)//m
            m += 1
    print([A104706(n) for n in (1..97)]) # Peter Luschny, Dec 04 2015

Formula

a(n) = A028920(2n-1)-1. - Benoit Cloitre, Mar 09 2007