cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104748 Decimal expansion of solution to x*2^x = 1.

Original entry on oeis.org

6, 4, 1, 1, 8, 5, 7, 4, 4, 5, 0, 4, 9, 8, 5, 9, 8, 4, 4, 8, 6, 2, 0, 0, 4, 8, 2, 1, 1, 4, 8, 2, 3, 6, 6, 6, 5, 6, 2, 8, 2, 0, 9, 5, 7, 1, 9, 1, 1, 0, 1, 7, 5, 5, 1, 3, 9, 6, 9, 8, 7, 9, 7, 5, 4, 3, 4, 8, 7, 4, 9, 1, 8, 7, 8, 7, 9, 9, 7, 6, 2, 2, 3, 4, 0, 5, 3, 6, 9, 3, 4, 9, 9, 1, 6, 8, 5, 8, 8, 5, 9, 2, 3, 3, 3
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Comments

Writing the equation as (1/2)^x = x, the solution is the value of the infinite power tower function h(t) = t^t^t^... at t = 1/2. The solution is a transcendental number. - Jonathan Sondow, Aug 29 2011
Equals LambertW(log(2))/log(2) since, for 1/E^E <= c < 1, c^c^c^... = LambertW(log(1/c))/log(1/c). - Stanislav Sykora, Nov 03 2013

Examples

			x = 0.641185744504985984486200482114823666562820957191101... = (1/2)^(1/2)^(1/2)^...
		

Crossrefs

Equals 1/A030798.
Cf. A073084.

Programs

  • Mathematica
    RealDigits[ ProductLog[ Log[2]]/Log[2], 10, 111][[1]] (* Robert G. Wilson v, Mar 23 2005 *)
    RealDigits[x/.FindRoot[x 2^x==1,{x,.6},WorkingPrecision->100]][[1]] (* Harvey P. Dale, Apr 17 2019 *)
  • PARI
    lambertw(log(2))/log(2) \\ Stanislav Sykora, Nov 03 2013

Extensions

More terms from Robert G. Wilson v, Mar 23 2005
Offset corrected by R. J. Mathar, Feb 05 2009