A104762 Triangle read by rows: row n contains first n nonzero Fibonacci numbers in decreasing order.
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 3, 2, 1, 1, 8, 5, 3, 2, 1, 1, 13, 8, 5, 3, 2, 1, 1, 21, 13, 8, 5, 3, 2, 1, 1, 34, 21, 13, 8, 5, 3, 2, 1, 1, 55, 34, 21, 13, 8, 5, 3, 2, 1, 1, 89, 55, 34, 21, 13, 8, 5, 3, 2, 1, 1, 144, 89, 55, 34, 21, 13, 8, 5, 3, 2, 1, 1, 233, 144, 89, 55, 34, 21, 13, 8, 5, 3, 2, 1
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; 2, 1, 1; 3, 2, 1, 1; 5, 3, 2, 1, 1; 8, 5, 3, 2, 1, 1; ... From _Philippe Deléham_, Oct 07 2014: (Start) Production matrix begins: 1, 1; 1, 0, 1; 0, 0, 0, 1; 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 1; ... (End)
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Crossrefs
Programs
-
Maple
seq(seq(combinat:-fibonacci(n-i),i=0..n-1),n=1..20); # Robert Israel, May 01 2016
-
Mathematica
r = N[(1 + Sqrt[5])/2, 100]; s = N[(1 - Sqrt[5])/2, 100]; t = Table[Abs[Round[(r^n)*(s^k)/Sqrt[5]]], {n, 2, 15}, {k, 1, n - 1}] Flatten[t] TableForm[t] (* Clark Kimberling, May 01 2016 *) Table[Reverse[Fibonacci[Range[n]]],{n,15}]//Flatten (* Harvey P. Dale, Jan 28 2019 *)
Formula
In every column, (1, 1, 2, 3, 5, ...); the nonzero Fibonacci numbers, A000045.
a(n,k) = A000045(n-k+1). - R. J. Mathar, Jun 23 2006
a(n) = A000045(m), where m = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 13 2012
a(n,k) = |round((r^n)*(s^k)/sqrt(5))|, where r = golden ratio = (1 + sqrt(5))/2, s = (1 - sqrt(5))/2, 1 <= k <= n-1, n >= 2. - Clark Kimberling, May 01 2016
G.f. of triangle: G(x,y) = x*y/((1-x-x^2)*(1-x*y)). - Robert Israel, May 01 2016
Extensions
Edited by N. J. A. Sloane at the suggestion of Philippe Deléham, Jun 11 2007
More terms from Philippe Deléham, Apr 21 2009
Comments