A104857 Positive integers that cannot be represented as the sum of distinct Lucas 3-step numbers (A001644).
2, 5, 6, 9, 13, 16, 17, 20, 23, 26, 27, 30, 34, 37, 38, 41, 44, 45, 48, 52, 55, 56, 59, 62, 65, 66, 69, 73, 76, 77, 80, 84, 87, 88, 91, 94, 97, 98, 101, 105, 108, 109, 112, 115, 116, 119, 123, 126, 127, 130, 133, 136, 137, 140, 144, 147, 148, 151, 154
Offset: 1
Examples
In "base Lucas 3-step numbers" we can represent 1 as "1", but cannot represent 2 because there is no next Lucas 3-step number until 3 and we can't have two instances of 1 summed here. We can represent 3 as "10" (one 3 and no 1's), 4 as "11" (one 3 and one 1). Then we cannot represent 5 or 6 because there is no next Lucas 3-step number until 7 and we can't sum two 3s or six 1's. 7 becomes "100" (one 7, no 3s and no 1's), 8 becomes "101" and so forth.
Links
- Eric Weisstein's World of Mathematics, Lucas n-Step Number.
Extensions
More terms from T. D. Noe, Apr 26 2005
Comments