cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104859 Partial sums of A001764.

Original entry on oeis.org

1, 2, 5, 17, 72, 345, 1773, 9525, 52788, 299463, 1730178, 10144818, 60211926, 361042498, 2183809018, 13308564682, 81637319641, 503667864976, 3123298907641, 19456221197941, 121696331095636, 764008782313381
Offset: 0

Views

Author

Emeric Deutsch, Apr 24 2005

Keywords

Crossrefs

Cf. A001764.

Programs

  • Maple
    a:=n->add(binomial(3*k,k)/(2*k+1),k=0..n): seq(a(n),n=0..26);
  • Mathematica
    Table[Sum[Binomial[3k,k]/(2k+1),{k,0,n}],{n,0,20}] (* Emanuele Munarini, Apr 08 2011 *)
  • Maxima
    makelist(sum(binomial(3*k,k)/(2*k+1),k,0,n),n,0,20); /* Emanuele Munarini, Apr 08 2011 */

Formula

a(n) = Sum_{k=0..n} binomial(3k, k)/(2k+1).
G.f.: T(z)/(1-z), where T = 1+z*T^3.
G.f.: 2*sin((1/3)*arcsin(sqrt(27*z/4)))/((1-z)*sqrt(3*z)).
Recurrence: 2*(2*n^2 + 9*n + 10)*a(n+2) - (31*n^2 + 99*n + 80)*a(1+n) + 3*(9*n^2 + 27*n + 20)*a(n) = 0. - Emanuele Munarini, Apr 08 2011
a(n) ~ 3^(3*n+7/2)/(23*sqrt(Pi)*2^(2*n+2)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * (1 - x)^2 * A(x)^3. - Ilya Gutkovskiy, Jul 25 2021