cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104862 First differences of A014292.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, -2, -5, -9, -13, -15, -12, 0, 25, 65, 117, 169, 196, 158, 3, -321, -841, -1519, -2200, -2560, -2079, -79, 4121, 10881, 19720, 28638, 33435, 27351, 1547, -52895, -140772, -256000, -372775, -436655, -359763, -26871
Offset: 0

Views

Author

Gerald McGarvey, Apr 24 2005

Keywords

Comments

Real part of the sequence of complex numbers defined by c(n) = c(n-1) + i*c(n-2) for n > 1, c(0) = 1, c(1) = 1.
a(n) = real part of the sequence b of quaternions defined by b(0)=1, b(1)=1, b(n) = b(n-1) + b(n-2)*(0,s,s,s) where s = 1/sqrt(3).

Crossrefs

Programs

  • Mathematica
    Differences@ LinearRecurrence[{2, -1, 0, -1}, {0, 0, 1, 2}, 42] (* Michael De Vlieger, Mar 19 2021 *)
  • Python
    a = [0]*1000
    a[1]=1
    for n in range(1,55):
        print(a[n-1], end=", ")
        s=sum(a[k] for k in range(n-2))
        a[n+1] = a[n]-s
    # from Alex Ratushnyak, May 03 2012

Formula

G.f.: Re(1/(1-x-ix^2)) = (1-x)/(1-2x+x^2+x^4). - Paul Barry, Apr 25 2005
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*cos(Pi*k/2). - Paul Barry, Apr 25 2005
a(0)=0, a(1)=1, a(n+1) = a(n) - Sum_{k=0..n-3} a(k). - Alex Ratushnyak, May 03 2012