cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A104843 Primes from merging of 2 successive digits in decimal expansion of e.

Original entry on oeis.org

71, 59, 23, 53, 47, 71, 13, 97, 47, 59, 67, 53, 47, 59, 71, 13, 17, 19, 59, 17, 41, 13, 59, 29, 43, 29, 29, 59, 73, 13, 23, 79, 43, 23, 29, 53, 31, 19, 19, 11, 73, 83, 41, 79, 89, 41, 67, 47, 61, 47, 41, 11, 53, 37, 23, 43, 37, 71, 53, 17, 61, 83, 61, 13, 31, 13, 83, 29, 97
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Scan decimal expansion of e from left to right, recording any 2-digit primes seen. Overlaps are allowed in all the sequences in this family. - N. J. A. Sloane, Feb 05 2012
Leading zeros are not permitted, so each term is 2 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Cf. A001113, A073246 (the one-digit primes in e), A104844 - A104862.

Programs

  • Mathematica
    With[{len=2},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[FromDigits[#]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A104850 Primes from merging of 9 successive digits in decimal expansion of e.

Original entry on oeis.org

360287471, 526059563, 132328627, 862794349, 573834187, 383418793, 879307021, 154089149, 675092447, 509244761, 234544243, 907774499, 744992069, 551702761, 860626133, 331384583, 297606737, 976067371, 113200709, 704723069, 108657463
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 9 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=9},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[ FromDigits[ #]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A104844 Primes from merging of 3 successive digits in decimal expansion of e.

Original entry on oeis.org

271, 281, 523, 353, 977, 757, 709, 967, 277, 353, 547, 457, 571, 821, 251, 919, 193, 599, 181, 359, 563, 307, 349, 907, 233, 829, 251, 101, 157, 383, 307, 149, 499, 167, 509, 761, 853, 107, 907, 449, 499, 761, 613, 331, 313, 449, 673, 113, 709, 709, 127
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 3 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=3},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[FromDigits[#]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A104847 Primes from merging of 6 successive digits in decimal expansion of e.

Original entry on oeis.org

904523, 360287, 624977, 757247, 995957, 967627, 630353, 759457, 594571, 932003, 904357, 290033, 307381, 381323, 627943, 525101, 738341, 341879, 418793, 884167, 847741, 560297, 606737, 328709, 977209, 720931, 169283, 695369, 644549, 312773
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 6 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=6},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[ FromDigits[#]] && IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A104845 Primes from merging of 4 successive digits in decimal expansion of e.

Original entry on oeis.org

4523, 8747, 7757, 7247, 5749, 6967, 6277, 3547, 4759, 3821, 6427, 4663, 3919, 2003, 1741, 9043, 4357, 8627, 4349, 6323, 8807, 5101, 1019, 1901, 9011, 1879, 1499, 4993, 2447, 7741, 7411, 8537, 4243, 2437, 3907, 2069, 9551, 7027, 6133, 3313, 4583, 4493
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 4 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=4},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[FromDigits[#]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A104846 Primes from merging of 5 successive digits in decimal expansion of e.

Original entry on oeis.org

74713, 62497, 24977, 24709, 47093, 95957, 49669, 27427, 46639, 32003, 59921, 21817, 35729, 63073, 28627, 27943, 94349, 33829, 98807, 57383, 41879, 18793, 91499, 68477, 47741, 37423, 42437, 24371, 10753, 17027, 61331, 13313, 93287
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 5 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=5},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[FromDigits[#]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 20 2013

A104848 Primes from merging of 7 successive digits in decimal expansion of e.

Original entry on oeis.org

2718281, 6028747, 2497757, 5354759, 4759457, 7594571, 5945713, 7138217, 3059921, 9921817, 6059563, 6307381, 3073813, 9525101, 5251019, 4089149, 8914993, 9348841, 4167509, 7774499, 8606261, 2613313, 5830007, 1274437
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 7 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=7},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[FromDigits[#]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 19 2013

A104849 Primes from merging of 8 successive digits in decimal expansion of e.

Original entry on oeis.org

72407663, 40766303, 54759457, 57138217, 20030599, 98807531, 15738341, 83418793, 34884167, 84167509, 22648001, 10753907, 20695517, 38606261, 82656029, 29760673, 13200709, 27443747, 74704723, 69772093, 92836819
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 8 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=8},FromDigits/@Select[Partition[RealDigits[E,10,1000][[1]], len,1],PrimeQ[FromDigits[#]]&&IntegerLength[FromDigits[#]]==len&]] (* Harvey P. Dale, Oct 23 2011 *)

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A014292 a(n) = 2*a(n-1) - a(n-2) - a(n-4) with a(0) = a(1) = 0, a(2) = 1, a(3) = 2.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 4, 2, -3, -12, -25, -40, -52, -52, -27, 38, 155, 324, 520, 678, 681, 360, -481, -2000, -4200, -6760, -8839, -8918, -4797, 6084, 25804, 54442, 87877, 115228, 116775, 63880, -76892, -332892, -705667, -1142322
Offset: 0

Views

Author

Keywords

Comments

Imaginary part of the sequence of complex numbers defined by c(0) = 1, c(1) = 1, for n>1 c(n) = c(n-1) + i*c(n-2). - Gerald McGarvey, Apr 24 2005
a(n) = sqrt(3)*y where (x,y,y,y) is the quaternion b(n) of the sequence b of quaternions defined by b(0)=1,b(1)=1, b(n) = b(n-1) + b(n-2)*(0,s,s,s) where s = 1/sqrt(3). - Gerald McGarvey, Apr 25 2005
For n>=1, a(n) is equal to -1 times the imaginary part of the determinant of the n X n matrix with the sqrt(i)'s along the superdiagonal and the subdiagonal (i is the imaginary unit), 1's along the main diagonal, and 0's everywhere else (see Mathematica code below). - John M. Campbell, Jun 04 2011

Crossrefs

Programs

  • GAP
    a:=[0,0,1,2];; for n in [5..40] do a[n]:=2*a[n-1]-a[n-2]-a[n-4]; od; a; # G. C. Greubel, Jun 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2/(1-2*x+x^2+x^4) )); // G. C. Greubel, Jun 12 2019
    
  • Mathematica
    Table[-Im[Det[Array[KroneckerDelta[#1 + 1, #2]*Sqrt[I] &, {n, n}] + Array[KroneckerDelta[#1 - 1, #2]*Sqrt[I] &, {n, n}] + IdentityMatrix[n]]], {n, 1, 40}] (* John M. Campbell, Jun 04 2011 *)
    LinearRecurrence[{2,-1,0,-1}, {0,0,1,2}, 40] (* G. C. Greubel, Jun 12 2019 *)
  • PARI
    my(x='x+O('x^40)); concat([0,0], Vec(x^2/(1-2*x+x^2+x^4))) \\ G. C. Greubel, Jun 12 2019
    
  • Sage
    (x^2/(1-2*x+x^2+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 12 2019
    

Formula

a(n) = Sum_{k=0..floor((n+2)/2)} binomial(n-k+2, k)*sin(Pi*k/2). - Paul Barry, Apr 25 2005
G.f.: x^2/(1 - 2*x + x^2 + x^4). - R. J. Mathar, Oct 22 2008

A106201 Expansion of Re(x/(1-x-2*i*x^2)), i=sqrt(-1).

Original entry on oeis.org

0, 1, 1, 1, 1, -3, -11, -23, -39, -43, -3, 129, 417, 877, 1349, 1305, -407, -5627, -16243, -32079, -46287, -37987, 35285, 236873, 623609, 1162293, 1559837, 1009889, -2034495, -9728051, -23660955, -41633415, -51467895, -22390171, 101331373, 391586577, 887713361, 1473400829, 1653762805, 267778473, -4669059303, -15499500395
Offset: 0

Views

Author

Paul Barry, Apr 25 2005

Keywords

Comments

Imaginary part is A106202.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,-4},{0,1,1,1},50] (* Harvey P. Dale, May 22 2020 *)

Formula

G.f.: x*(1-x)/(1-2*x+x^2+4*x^4).
a(n) = sum(k=0..floor((n-1)/2), C(n-k-1, k)*2^k*cos(pi*k/2) ).
Showing 1-10 of 12 results. Next