cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104881 Triangle T(n,k) = Sum_{j=0..k} (n-k)^(k-j), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 15, 5, 1, 1, 6, 21, 40, 31, 6, 1, 1, 7, 31, 85, 121, 63, 7, 1, 1, 8, 43, 156, 341, 364, 127, 8, 1, 1, 9, 57, 259, 781, 1365, 1093, 255, 9, 1, 1, 10, 73, 400, 1555, 3906, 5461, 3280, 511, 10, 1, 1, 11, 91, 585, 2801, 9331, 19531, 21845, 9841, 1023, 11, 1
Offset: 0

Views

Author

Paul Barry, Mar 28 2005

Keywords

Comments

Reverse of triangle A104878.

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  3,  1;
  1, 4,  7,  4, 1;
  1, 5, 13, 15, 5, 1;
		

Crossrefs

Cf. A104878, A104879 (row sums), A104882 (diagonal sums).

Programs

  • Magma
    [(&+[ (n-k)^(k-j): j in [0..k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 15 2021
    
  • Mathematica
    T[n_, k_]:= If[k==n, 1, Sum[(n-k)^(k-j), {j,0,k}]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 15 2021 *)
  • Sage
    flatten([[sum((n-k)^(k-j) for j in (0..k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 15 2021

Formula

T(n, k) = Sum_{j=0..k} (n-k)^(k-j).
Sum_{k=0..n} T(n, k) = A104879(n).
Sum_{k=0..floor(n/2)} T(k, n-k) = A104882(n).