cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A104882 Diagonal sums of number triangle A104881.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 24, 45, 85, 170, 351, 749, 1656, 3758, 8776, 21013, 51473, 129018, 329939, 860901, 2288528, 6192526, 17047248, 47693661, 135554549, 391099370, 1144867871, 3398656893, 10226072720, 31173964942, 96240485104, 300777706053
Offset: 0

Views

Author

Paul Barry, Mar 28 2005

Keywords

Crossrefs

Programs

  • Magma
    [(&+[ (&+[ (n-2*k)^(k-j) : j in [0..k]]) : k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2021
    
  • Mathematica
    Table[Sum[If[j==k, 1, (n-2*k)^(k-j)], {k, 0, Floor[n/2]}, {j,0,k}], {n,0,40}] (* G. C. Greubel, Jun 15 2021 *)
  • Sage
    [sum(sum((n-2*k)^(k-j) for j in (0..k)) for k in (0..n//2)) for n in (0..40)] # G. C. Greubel, Jun 15 2021

Formula

a(n) = Sum_{k=0..floor(n/2)} ( Sum_{j=0..k} (n-2*k)^(k-j) ).
a(n) = Sum_{k=0..floor(n/2)} A104881(n-k, k).

A067066 Number of Gnutella users reachable with given connections and hops.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 21, 8, 1, 6, 25, 52, 45, 10, 1, 7, 36, 105, 160, 93, 12, 1, 8, 49, 186, 425, 484, 189, 14, 1, 9, 64, 301, 936, 1705, 1456, 381, 16, 1, 10, 81, 456, 1813, 4686, 6825, 4372, 765, 18, 1, 11, 100, 657, 3200, 10885, 23436, 27305, 13120, 1533, 20, 1
Offset: 1

Views

Author

Michael Somos, Feb 17 2002

Keywords

Examples

			     1      1      1      1      1      1      1 ...
     2      4      6      8     10     12     14 ...
     3      9     21     45     93    189    381 ...
     4     16     52    160    484   1456   4372 ...
     5     25    105    425   1705   6825  27305 ...
     6     36    186    936   4686  23436 117186 ...
     7     49    301   1813  10885  65317 391909 ...
		

Crossrefs

Cf. A104881.

Formula

T(n,k) = n * Sum_{i=0..k-1} (n-1)^i.

Extensions

Offset corrected, R. J. Mathar, May 22 2016
Showing 1-2 of 2 results.