A104904
Numbers n such that d(n)*pi(n)=n, where d(n) is the number of positive divisors of n.
Original entry on oeis.org
2, 8408, 481044, 189961452, 75370122528, 75370124832, 4086199302976, 221945984411264
Offset: 1
189961452 is in the sequence because d(189961452)=18; pi(189961452)=10553414 & 18*10553414=189961452.
-
Do[If[DivisorSigma[0, n]*PrimePi[n] == n, Print[n]], {n, 2000000000}]
A104906
Numbers n such that d(n)*reversal(n)=phi(n), where d(n) is number of positive divisors of n.
Original entry on oeis.org
1, 10, 831, 8310
Offset: 1
8310 is in the sequence because d(8310)=16; reversal(8310)=138;
phi(8310)=2208 & 16*138=2108.
-
reversal[n_]:= FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[0, n]*reversal[n] == EulerPhi[n], Print[n]], {n, 350000000}]
A107656
Numbers k such that prime(k) = d(k)*phi(k) + 1, where d(k) is number of positive divisors of k.
Original entry on oeis.org
1, 2, 3, 4, 652245
Offset: 1
652245 is in the sequence because prime(652245) = d(652245)*phi(652245) + 1.
-
Do[If[Prime[n] == DivisorSigma[0, n]*EulerPhi[n] + 1, Print[n]], {n, 50000000}]
-
lista(pmax) = {my(k = 0, f); forprime(p=1, 1e16, k++; f = factor(k); if(p == numdiv(f)*eulerphi(f)+1, print1(k,", ")));} \\ Amiram Eldar, Apr 30 2024
Showing 1-3 of 3 results.
Comments