A104968 Absolute row sums of triangle A104967.
1, 2, 4, 6, 6, 12, 22, 32, 34, 52, 100, 150, 170, 266, 438, 640, 766, 1196, 1996, 2888, 3210, 4994, 8534, 12392, 15106, 22154, 34366, 52134, 62148, 96956, 156396, 217416, 262062, 394164, 643908, 950944, 1150368, 1689176, 2600992, 3767888, 4840338
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
A104967[n_, k_]:= A104967[n, k]= Sum[(-2)^j*Binomial[k+1, j]*Binomial[n-j, k], {j, 0, n-k}]; A104968[n_]:= A104968[n]= Sum[Abs[A104967[n, k]], {k,0,n}]; Table[A104968[n], {n, 0, 50}] (* G. C. Greubel, Jun 09 2021 *)
-
PARI
{a(n)=local(X=x+x*O(x^n)); sum(k=0,n,abs(polcoeff(polcoeff((1-2*X)/(1-X-X*y*(1-2*X)),n,x),k,y)))}
-
Sage
@cached_function def A104967(n,k): return sum( (-2)^j*binomial(k+1,j)*binomial(n-j,k) for j in (0..n-k)) def A104968(n): return sum( abs(A104967(n,k)) for k in (0..n)) [A104968(n) for n in (0..50)] # G. C. Greubel, Jun 09 2021
Formula
a(n) = Sum_{k=0..n} abs(A104967(n,k)).