cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104968 Absolute row sums of triangle A104967.

Original entry on oeis.org

1, 2, 4, 6, 6, 12, 22, 32, 34, 52, 100, 150, 170, 266, 438, 640, 766, 1196, 1996, 2888, 3210, 4994, 8534, 12392, 15106, 22154, 34366, 52134, 62148, 96956, 156396, 217416, 262062, 394164, 643908, 950944, 1150368, 1689176, 2600992, 3767888, 4840338
Offset: 0

Views

Author

Paul D. Hanna, Mar 30 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104967[n_, k_]:= A104967[n, k]= Sum[(-2)^j*Binomial[k+1, j]*Binomial[n-j, k], {j, 0, n-k}];
    A104968[n_]:= A104968[n]= Sum[Abs[A104967[n, k]], {k,0,n}];
    Table[A104968[n], {n, 0, 50}] (* G. C. Greubel, Jun 09 2021 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); sum(k=0,n,abs(polcoeff(polcoeff((1-2*X)/(1-X-X*y*(1-2*X)),n,x),k,y)))}
    
  • Sage
    @cached_function
    def A104967(n,k): return sum( (-2)^j*binomial(k+1,j)*binomial(n-j,k) for j in (0..n-k))
    def A104968(n): return sum( abs(A104967(n,k)) for k in (0..n))
    [A104968(n) for n in (0..50)] # G. C. Greubel, Jun 09 2021

Formula

a(n) = Sum_{k=0..n} abs(A104967(n,k)).