cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104969 Sum of squares of terms in rows of triangle A104967.

Original entry on oeis.org

1, 2, 6, 12, 18, 36, 92, 184, 298, 596, 1444, 2888, 4852, 9704, 22840, 45680, 78490, 156980, 362580, 725160, 1265564, 2531128, 5767688, 11535376, 20366596, 40733192, 91866984, 183733968, 327351336, 654702672, 1464522864, 2929045728
Offset: 0

Views

Author

Paul D. Hanna, Mar 30 2005

Keywords

Crossrefs

Programs

  • Mathematica
    A104967[n_, k_]:= A104967[n, k]= Sum[(-2)^j*Binomial[k+1, j]*Binomial[n-j, k], {j, 0, n-k}];
    A104969[n_]:= A104969[n]= Sum[A104967[n, k]^2, {k,0,n}];
    Table[A104969[n], {n, 0, 50}] (* G. C. Greubel, Jun 09 2021 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); sum(k=0,n,polcoeff(polcoeff((1-2*X)/(1-X-X*y*(1-2*X)),n,x),k,y)^2)}
    
  • Sage
    @cached_function
    def A104967(n,k): return sum( (-2)^j*binomial(k+1,j)*binomial(n-j,k) for j in (0..n-k))
    def A104969(n): return sum((A104967(n,k))^2 for k in (0..n))
    [A104969(n) for n in (0..50)] # G. C. Greubel, Jun 09 2021

Formula

a(2*n+1) = 2*a(2*n).
G.f.: A(x) = (1+2*x)*G(x^2) where G(x) is the g.f. of A104970 such that G(x) satisfies: 2*(1+12*x)*G(x) - (1-16*x^2)*deriv(G(x), x) + 4 = 0.
a(n) = Sum_{k=0..n} (A104967(n, k))^2.