cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104970 Sum of squares of terms in even-indexed rows of triangle A104967.

Original entry on oeis.org

1, 6, 18, 92, 298, 1444, 4852, 22840, 78490, 362580, 1265564, 5767688, 20366596, 91866984, 327351336, 1464522864, 5257011066, 23361650484, 84371466636, 372831130344, 1353477992556, 5952169844664, 21704580414936, 95051752387344
Offset: 0

Views

Author

Paul D. Hanna, Mar 30 2005

Keywords

Comments

Sum of squares of terms in odd-indexed rows of triangle A104967 equals twice this sequence.

Crossrefs

Programs

  • Magma
    A104970:= func< n | n eq 0 select 1 else  4^n + (&+[(-1)^j*2^(2*n-2*j-1)*Binomial(2*j+1,j+1): j in [0..n-1]]) >;
    [A104970(n): n in [0..40]]; // G. C. Greubel, Jun 09 2021
    
  • Mathematica
    Flatten[{1,Table[2^(2*n-1)*(2+Sum[(-1)^k*Binomial[2*k+1,k+1]/2^(2*k),{k,0,n-1}]),{n,1,20}]}] (* Vaclav Kotesovec, Oct 28 2012 *)
  • PARI
    {a(n)=local(X=x+x*O(x^(2*n))); sum(k=0,2*n,polcoeff(polcoeff((1-2*X)/(1-X-X*y*(1-2*X)),2*n,x),k,y)^2)}
    
  • Sage
    @cached_function
    def A104967(n,k): return sum( (-2)^j*binomial(k+1,j)*binomial(n-j,k) for j in (0..n-k))
    def A104970(n): return sum((A104967(2*n,k))^2 for k in (0..2*n))
    [A104970(n) for n in (0..50)] # G. C. Greubel, Jun 09 2021

Formula

G.f. A(x) satisfies: 2*(1+12*x)*A(x) - (1-16*x^2)*deriv(A(x), x) + 4 = 0.
a(n) = 2^(2*n-1)*(2 + Sum_{k=0..n-1} (-1)^k*binomial(2*k+1,k+1)/2^(2*k)). - Vaclav Kotesovec, Oct 28 2012