A104988 Matrix square of triangle A104980.
1, 2, 1, 8, 4, 1, 42, 20, 6, 1, 266, 120, 38, 8, 1, 1954, 836, 270, 62, 10, 1, 16270, 6616, 2150, 516, 92, 12, 1, 151218, 58576, 19030, 4688, 882, 128, 14, 1, 1551334, 573672, 185674, 46516, 9050, 1392, 170, 16, 1, 17414114, 6159976, 1982310, 502324, 99994, 15956, 2070, 218, 18, 1
Offset: 0
Examples
Triangle begins: 1; 2, 1; 8, 4, 1; 42, 20, 6, 1; 266, 120, 38, 8, 1; 1954, 836, 270, 62, 10, 1; 16270, 6616, 2150, 516, 92, 12, 1; 151218, 58576, 19030, 4688, 882, 128, 14, 1; 1551334, 573672, 185674, 46516, 9050, 1392, 170, 16, 1; 17414114, 6159976, 1982310, 502324, 99994, 15956, 2070, 218, 18, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
t[n_, k_]:= t[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*t[n, k+1] + Sum[t[j, 0]*t[n, j+k+1], {j, 0, n-k-1}]]]]; (* t = A104980 *) M:= With[{q=20}, Table[If[j>i, 0, t[i, j]], {i,0,q}, {j,0,q}]]; Table[MatrixPower[M, 2][[n+1, k+1]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
-
PARI
T(n,k)= if(n
Comments