Original entry on oeis.org
1, 2, 1, 8, 4, 1, 42, 20, 6, 1, 266, 120, 38, 8, 1, 1954, 836, 270, 62, 10, 1, 16270, 6616, 2150, 516, 92, 12, 1, 151218, 58576, 19030, 4688, 882, 128, 14, 1, 1551334, 573672, 185674, 46516, 9050, 1392, 170, 16, 1, 17414114, 6159976, 1982310, 502324, 99994, 15956, 2070, 218, 18, 1
Offset: 0
Triangle begins:
1;
2, 1;
8, 4, 1;
42, 20, 6, 1;
266, 120, 38, 8, 1;
1954, 836, 270, 62, 10, 1;
16270, 6616, 2150, 516, 92, 12, 1;
151218, 58576, 19030, 4688, 882, 128, 14, 1;
1551334, 573672, 185674, 46516, 9050, 1392, 170, 16, 1;
17414114, 6159976, 1982310, 502324, 99994, 15956, 2070, 218, 18, 1;
-
t[n_, k_]:= t[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*t[n, k+1] + Sum[t[j, 0]*t[n, j+k+1], {j, 0, n-k-1}]]]]; (* t = A104980 *)
M:= With[{q=20}, Table[If[j>i, 0, t[i, j]], {i,0,q}, {j,0,q}]];
Table[MatrixPower[M, 2][[n+1, k+1]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
-
T(n,k)= if(n
A125777
Moessner triangle based on A000217.
Original entry on oeis.org
1, 3, 6, 13, 28, 21, 69, 161, 137, 55, 433, 1078, 1017, 477, 120, 3141, 8245, 8437, 4460, 1337, 231, 25873, 71008, 77620, 45058, 15415, 3220, 406, 238629, 680451, 786012, 492264, 186729, 44955, 6930, 666, 2436673, 7184170, 8699205, 5804448, 2394150
Offset: 1
First few rows of the triangle are as follows:
1;
3, 6;
13, 28, 21;
69, 161, 137, 55;
433, 1078, 1017, 477, 120;
...
- J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, p. 64.
- Joshua Zucker, Table of n, a(n) for n = 1..55
- G. S. Kazandzidis, On a conjecture of Moessner and a general problem, Bull. Soc. Math. Grèce (N.S.) 2 (1961), 23-30.
- Dexter Kozen and Alexandra Silva, On Moessner's theorem, Amer. Math. Monthly 120(2) (2013), 131-139.
- Calvin T. Long, Strike it out--add it up, Math. Gaz. 66 (438) (1982), 273-277.
- Alfred Moessner, Eine Bemerkung über die Potenzen der natürlichen Zahlen, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 29, 1951.
- M. Niqui and J. J. M. M. Rutten, A proof of Moessner's theorem by coinduction, High.-Order Symb. Comput. 24(3) (2011), 191-206.
- Oskar Perron, Beweis des Moessnerschen Satzes, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 31-34, 1951.
Showing 1-2 of 2 results.
Comments