cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A104988 Matrix square of triangle A104980.

Original entry on oeis.org

1, 2, 1, 8, 4, 1, 42, 20, 6, 1, 266, 120, 38, 8, 1, 1954, 836, 270, 62, 10, 1, 16270, 6616, 2150, 516, 92, 12, 1, 151218, 58576, 19030, 4688, 882, 128, 14, 1, 1551334, 573672, 185674, 46516, 9050, 1392, 170, 16, 1, 17414114, 6159976, 1982310, 502324, 99994, 15956, 2070, 218, 18, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 10 2005

Keywords

Comments

Triangular matrix A104980 satisfies: SHIFT_LEFT(column 0 of A104980^p) = p*(column p+1 of A104980) for p>=0.

Examples

			Triangle begins:
         1;
         2,       1;
         8,       4,       1;
        42,      20,       6,      1;
       266,     120,      38,      8,     1;
      1954,     836,     270,     62,    10,     1;
     16270,    6616,    2150,    516,    92,    12,    1;
    151218,   58576,   19030,   4688,   882,   128,   14,   1;
   1551334,  573672,  185674,  46516,  9050,  1392,  170,  16,  1;
  17414114, 6159976, 1982310, 502324, 99994, 15956, 2070, 218, 18, 1;
		

Crossrefs

Cf. A104980, A104982 (column 0), A104989 (row sums).

Programs

  • Mathematica
    t[n_, k_]:= t[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*t[n, k+1] + Sum[t[j, 0]*t[n, j+k+1], {j, 0, n-k-1}]]]]; (* t = A104980 *)
    M:= With[{q=20}, Table[If[j>i, 0, t[i, j]], {i,0,q}, {j,0,q}]];
    Table[MatrixPower[M, 2][[n+1, k+1]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
  • PARI
    T(n,k)= if(n
    				

Formula

T(n+1, 0) = 2*A104980(n+3, 3) = 2*A104982(n) for n>=0.

A125777 Moessner triangle based on A000217.

Original entry on oeis.org

1, 3, 6, 13, 28, 21, 69, 161, 137, 55, 433, 1078, 1017, 477, 120, 3141, 8245, 8437, 4460, 1337, 231, 25873, 71008, 77620, 45058, 15415, 3220, 406, 238629, 680451, 786012, 492264, 186729, 44955, 6930, 666, 2436673, 7184170, 8699205, 5804448, 2394150
Offset: 1

Views

Author

Gary W. Adamson, Dec 07 2006

Keywords

Comments

Begin with the triangular numbers A000217 and circle every T(k)-th term, getting the doubly triangular numbers, A002817. Per instructions shown in A125714, take partial sums of the uncircled terms in row 1, denoting this as row 2. Circle the row 2 terms which are one place to the left of row 1 terms. Take partial sums again in analogous operations for subsequent rows.
Left border = A104989: (1, 3, 13, 69, 433...). Right border = the doubly triangular numbers starting (1, 6, 21...): A002817.

Examples

			First few rows of the triangle are as follows:
    1;
    3,    6;
   13,   28,   21;
   69,  161,  137,  55;
  433, 1078, 1017, 477, 120;
  ...
		

References

  • J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, p. 64.

Crossrefs

Extensions

More terms from Joshua Zucker, Jun 17 2007
Showing 1-2 of 2 results.