A104990 Matrix cube of triangle A104980.
1, 3, 1, 15, 6, 1, 93, 39, 9, 1, 675, 285, 75, 12, 1, 5577, 2331, 657, 123, 15, 1, 51555, 21153, 6207, 1269, 183, 18, 1, 526809, 211227, 63549, 13743, 2181, 255, 21, 1, 5895819, 2304321, 704319, 158325, 26739, 3453, 339, 24, 1, 71733585, 27291843, 8424813, 1947711, 343641, 47355, 5145, 435, 27, 1
Offset: 0
Examples
Triangle begins: 1; 3, 1; 15, 6, 1; 93, 39, 9, 1; 675, 285, 75, 12, 1; 5577, 2331, 657, 123, 15, 1; 51555, 21153, 6207, 1269, 183, 18, 1; 526809, 211227, 63549, 13743, 2181, 255, 21, 1; 5895819, 2304321, 704319, 158325, 26739, 3453, 339, 24, 1; 71733585, 27291843, 8424813, 1947711, 343641, 47355, 5145, 435, 27, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
t[n_, k_]:= t[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*t[n, k+1] + Sum[t[j, 0]*t[n, j+k+1], {j, 0, n-k-1}]]]]; (* t = A104980 *) M:= With[{q=20}, Table[If[j>i, 0, t[i, j]], {i,0,q}, {j,0,q}]]; Table[MatrixPower[M, 3][[n+1, k+1]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
-
PARI
T(n,k)=if(n
Formula
T(n+1, 0) = 3*A104980(n+4, 4) for n>=0.
Comments