cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105017 Positions of records in A064097.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 19, 23, 43, 47, 94, 139, 235, 283, 517, 659, 1081, 1319, 2209, 2879, 5758, 8637, 13301, 20147, 30337, 49727, 61993, 103823, 135313, 247439, 366683, 606743, 811879, 1266767, 1739761, 2913671, 3797401, 5827343, 8288641, 16577282, 22784407, 37346483, 58003213, 81768767
Offset: 1

Views

Author

Hugo Pfoertner, Feb 17 2006

Keywords

Comments

With a(1) = 1, a(n) is the smallest number m such that the number of iterations of k -> k - k/p, p being any prime factor of k, needed to reach 1 starting at k = m is equal to n-1. (See Example section.) - Jaroslav Krizek, Feb 15 2010
a(n) =~ sqrt(e^(5n/6)). - Robert G. Wilson v, Aug 11 2022

Examples

			a(6)=11 because m=11 requires 6-1 = 5 iterations of r -> r - (largest divisor d < r) to reach 1 (the 5 iterations are 11-1=10, 10-5=5, 5-1=4, 4-2=2, and 2-1=1) and 11 is the smallest such number m. - _Jaroslav Krizek_, Feb 15 2010
		

Crossrefs

Programs

  • Maple
    A105017 := proc()
        local maxa,a ;
        maxa := -999 ;
        for n from 1 do
            a := A064097(n) ;
            if a > maxa then
                printf("%d\n",n) ;
                maxa :=a ;
            end if;
        end do:
    end proc:
    A105017() ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    g[n_] := Block[{p = Select[1 + Divisors@n, PrimeQ]}, n*p/(p - 1)]; f[n_] := f[n] = Block[{lst = Union@Flatten[g@# & /@ f[n - 1]]}, If[ Length@ lst > 325, lst = Take[lst, 325 (* This limit must be increased for greater n's from the start. *) ]]; lst]; f[1] = {1}; f[0] = {0}; lst = {}; Do[ AppendTo[lst, Min[ f[n]]]; f[n - 1] =., {n, 44}]; lst (* Robert G. Wilson v, Aug 11 2022 *)
  • PARI
    a=vectorsmall(10^7); a[1]=0;
    for(n=2,#a,if(isprime(n),a[n]=1+a[n-1],f=factor(n);a[n]=a[f[1,1]]+a[n/f[1,1]])); \\ computes A064097
    r=-oo; for(k=1,#a,if(a[k]>r,print1(k,", ");r=a[k])); \\ Hugo Pfoertner, Mar 16 2020

Extensions

a(1)=1 inserted by Robert G. Wilson v, Mar 16 2020