A105036 a(n) = 26*a(n-2) - a(n-4) + 12, with a(0) = 0, a(1) = 4, a(2) = 8, a(3) = 116.
0, 4, 8, 116, 220, 3024, 5724, 78520, 148616, 2038508, 3858304, 52922700, 100167300, 1373951704, 2600491508, 35669821616, 67512611920, 926041410324, 1752727418424, 24041406846820, 45503400267116, 624150536607008
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,26,-26,-1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( 4*x*(1+x+x^2)/((1-x)*(1-26*x^2+x^4)) )); // G. C. Greubel, Mar 15 2023 -
Mathematica
LinearRecurrence[{1,26,-26,-1,1},{0,4,8,116,220},30] (* Harvey P. Dale, Mar 25 2013 *)
-
SageMath
@CachedFunction def a(n): # a = A105036 if (n<5): return (0,4,8,116,220)[n] else: return a(n-1) +26*a(n-2) -26*a(n-3) -a(n-4) +a(n-5) [a(n) for n in range(41)] # G. C. Greubel, Mar 15 2023
Formula
a(n) = 26*a(n-2) - a(n-4) + 12, for n > 3.
From R. J. Mathar, Sep 13 2009: (Start)
G.f.: 4*x*(1+x+x^2)/((1-x)*(1-26*x^2+x^4)).
a(n) = a(n-1) +26*a(n-2) -26*a(n-3) -a(n-4) +a(n-5). (End)
From Ralf Stephan, Nov 15 2010: (Start)
Comments