cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105036 a(n) = 26*a(n-2) - a(n-4) + 12, with a(0) = 0, a(1) = 4, a(2) = 8, a(3) = 116.

Original entry on oeis.org

0, 4, 8, 116, 220, 3024, 5724, 78520, 148616, 2038508, 3858304, 52922700, 100167300, 1373951704, 2600491508, 35669821616, 67512611920, 926041410324, 1752727418424, 24041406846820, 45503400267116, 624150536607008
Offset: 0

Views

Author

Gerald McGarvey, Apr 03 2005

Keywords

Comments

It appears this sequence gives all the nonnegative m such that 42*m^2 + 42*m + 1 is a square.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( 4*x*(1+x+x^2)/((1-x)*(1-26*x^2+x^4)) )); // G. C. Greubel, Mar 15 2023
    
  • Mathematica
    LinearRecurrence[{1,26,-26,-1,1},{0,4,8,116,220},30] (* Harvey P. Dale, Mar 25 2013 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A105036
        if (n<5): return (0,4,8,116,220)[n]
        else: return a(n-1) +26*a(n-2) -26*a(n-3) -a(n-4) +a(n-5)
    [a(n) for n in range(41)] # G. C. Greubel, Mar 15 2023

Formula

a(n) = 26*a(n-2) - a(n-4) + 12, for n > 3.
From R. J. Mathar, Sep 13 2009: (Start)
G.f.: 4*x*(1+x+x^2)/((1-x)*(1-26*x^2+x^4)).
a(n) = a(n-1) +26*a(n-2) -26*a(n-3) -a(n-4) +a(n-5). (End)
From Ralf Stephan, Nov 15 2010: (Start)
a(2n) = (1/2)*(A097309(n+2) - 9*A097309(n+1) - 1).
a(2n+1) = (1/2)*(9*A097309(n+2) - A097309(n+1) - 1). (End)