A105045 a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=12; for n > 4, a(n) = 8*a(n-2) - a(n-4) - 3.
0, 1, 2, 3, 12, 20, 91, 154, 713, 1209, 5610, 9515, 44164, 74908, 347699, 589746, 2737425, 4643057, 21551698, 36554707, 169676156, 287794596, 1335857547, 2265802058, 10517184217, 17838621865, 82801616186, 140443172859, 651895745268, 1105706761004, 5132364345955
Offset: 0
Examples
For n=3, a(3)=3; b(3)=14; binomial(14,6)=3003; binomial(14,4)*binomial(3,2) = 1001*3 = 3003. - _Paul Weisenhorn_, Jun 30 2010
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (1,8,-8,-1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x-7*x^2+x^3+x^4)/((1-x)*(1-8*x^2+x^4)) )); // G. C. Greubel, Mar 14 2023 -
Maple
n:=1: for m from 1 to 2000 do w:=sqrt(1+60*m*(m-1)): if (w=floor(w)) then a(n)=m: b(n)=(9+w)/2: inc(n): end if: end do # Paul Weisenhorn, Jun 30 2010
-
Mathematica
Join[{0},RecurrenceTable[{a[1]==1,a[2]==2,a[3]==3,a[4]==12,a[n] == 8a[n-2]-a[n-4]-3},a,{n,30}]] (* or *) LinearRecurrence[{1,8,-8,-1, 1}, {0,1,2,3,12,20}, 30] (* Harvey P. Dale, Nov 10 2011 *)
-
SageMath
@CachedFunction def a(n): # a = A105045 if (n<6): return (0,1,2,3,12,20)[n] else: return a(n-1) +8*a(n-2) -8*a(n-3) -a(n-4) +a(n-5) [a(n) for n in range(41)] # G. C. Greubel, Mar 14 2023
Formula
a(n) = 8*a(n-2) - a(n-4) - 3, for n > 4.
From Paul Weisenhorn, Jun 30 2010: (Start)
Let r=sqrt(15), then
a(n) = ((15+r)*(4+r)^((n-1)/2) + (15-r)*(4-r)^((n-1)/2) + 30)/60 when n is odd, and
a(n) = ((45+11*r)*(4+r)^((n-2)/2) + (45-11*r)*(4-r)^((n-2)/2) + 30)/60 when n is even. (End)
a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - a(n-4) + a(n-5), a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=12, a(5)=20. - Harvey P. Dale, Nov 10 2011
G.f.: x*(1 +x -7*x^2 +x^3 +x^4)/((1-x)*(1-8*x^2+x^4)). - Colin Barker, Jan 01 2013
Extensions
More terms from Colin Barker, Jan 01 2013
Comments