cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105045 a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=12; for n > 4, a(n) = 8*a(n-2) - a(n-4) - 3.

Original entry on oeis.org

0, 1, 2, 3, 12, 20, 91, 154, 713, 1209, 5610, 9515, 44164, 74908, 347699, 589746, 2737425, 4643057, 21551698, 36554707, 169676156, 287794596, 1335857547, 2265802058, 10517184217, 17838621865, 82801616186, 140443172859, 651895745268, 1105706761004, 5132364345955
Offset: 0

Views

Author

Gerald McGarvey, Apr 03 2005

Keywords

Comments

It appears that this sequence gives all nonnegative m such that 60*m^2 - 60*m + 1 is a square and that for n > 3, a(n+1) = A103200(n) + 1.
From Paul Weisenhorn, Jun 30 2010: (Start)
Place b(n) red and a(n) blue balls in an urn, then draw 6 balls without replacement.
This gives binomial(b(n), 6) = binomial(b(n), 4) * binomial(a(n), 2), where b(n) = A179123(n). (End)

Examples

			For n=3, a(3)=3; b(3)=14; binomial(14,6)=3003; binomial(14,4)*binomial(3,2) = 1001*3 = 3003. - _Paul Weisenhorn_, Jun 30 2010
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1+x-7*x^2+x^3+x^4)/((1-x)*(1-8*x^2+x^4)) )); // G. C. Greubel, Mar 14 2023
    
  • Maple
    n:=1: for m from 1 to 2000 do w:=sqrt(1+60*m*(m-1)):
    if (w=floor(w)) then a(n)=m: b(n)=(9+w)/2: inc(n): end if: end do # Paul Weisenhorn, Jun 30 2010
  • Mathematica
    Join[{0},RecurrenceTable[{a[1]==1,a[2]==2,a[3]==3,a[4]==12,a[n] == 8a[n-2]-a[n-4]-3},a,{n,30}]] (* or *) LinearRecurrence[{1,8,-8,-1, 1}, {0,1,2,3,12,20}, 30] (* Harvey P. Dale, Nov 10 2011 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A105045
        if (n<6): return (0,1,2,3,12,20)[n]
        else: return a(n-1) +8*a(n-2) -8*a(n-3) -a(n-4) +a(n-5)
    [a(n) for n in range(41)] # G. C. Greubel, Mar 14 2023

Formula

a(n) = 8*a(n-2) - a(n-4) - 3, for n > 4.
From Paul Weisenhorn, Jun 30 2010: (Start)
Let r=sqrt(15), then
a(n) = ((15+r)*(4+r)^((n-1)/2) + (15-r)*(4-r)^((n-1)/2) + 30)/60 when n is odd, and
a(n) = ((45+11*r)*(4+r)^((n-2)/2) + (45-11*r)*(4-r)^((n-2)/2) + 30)/60 when n is even. (End)
a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - a(n-4) + a(n-5), a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=12, a(5)=20. - Harvey P. Dale, Nov 10 2011
G.f.: x*(1 +x -7*x^2 +x^3 +x^4)/((1-x)*(1-8*x^2+x^4)). - Colin Barker, Jan 01 2013

Extensions

More terms from Colin Barker, Jan 01 2013