A105051 Define a(1)=0, a(2)=0, a(3)=15, a(4)=111 then a(n) = 254*a(n-2) - a(n-4) + 126 also sequence such that 7*a(n)*(a(n) + 1) + 1 = a square.
0, 0, 15, 111, 3936, 28320, 999855, 7193295, 253959360, 1827068736, 64504677711, 464068265775, 16383934179360, 117871512438240, 4161454776879855, 29938900091047311, 1056993129393303936, 7604362751613578880
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..825
- Index entries for linear recurrences with constant coefficients, signature (1,254,-254,-1,1).
Crossrefs
Cf. A105040.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( 3*x^2*(5+32*x+5*x^2)/((1-x)*(1-254*x^2+x^4)) )); // G. C. Greubel, Mar 13 2023 -
Mathematica
LinearRecurrence[{1,254,-254,-1,1}, {0,0,15,111,3936}, 30] (* G. C. Greubel, Mar 13 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A105051 if (n<6): return (0,0,0,15,111,3936)[n] else: return a(n-1) +254*a(n-2) -254*a(n-3) -a(n-4) +a(n-5) [a(n) for n in range(41)] # G. C. Greubel, Mar 13 2023
Formula
From R. J. Mathar, Aug 28 2008: (Start)
a(n) = A105040(n-2).
G.f.: 3*x^2*(5+32*x+5*x^2)/((1-x)*(1+16*x+x^2)*(1-16*x+x^2)). (End)
Extensions
Extended by R. J. Mathar, Aug 28 2008
Comments