cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A105256 Sign doubling substitution of the Rauzy: 1->{1,2},2->{1,3},3->1 using a digraphy symmetry to the bi-Kenyon version (not a triangular nest of nests, but a straight level 5).

Original entry on oeis.org

1, 4, 2, 4, 2, 1, 5, 1, 3, 4, 2, 1, 5, 1, 3, 1, 5, 1, 3, 4, 2, 4, 6, 4, 2, 1, 4, 2, 1, 5, 1, 3, 1, 5, 1, 3, 4, 2, 4, 6, 4, 2, 1, 1, 5, 1, 3, 4, 2, 4, 6, 4, 2, 1, 4, 2, 4, 6, 4, 2, 1, 1, 5, 1, 3, 1, 5, 4, 1, 5, 1, 3, 4, 2, 4, 2, 1, 5, 1, 3, 1, 5, 1, 3, 4, 2, 4, 6, 4, 2, 1, 1, 5, 1, 3, 4, 2, 4, 6, 4, 2, 1, 4, 2, 4
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2005

Keywords

Comments

The French/ Siegel Rauzy substitution is: 1->{1,2} 2->{1,3} 3->{1} This is digraph symmetrical to the Kenyon type substitution : 1->{2} 2->{3} 3->{3,2,1} Looking at the digraph of: 1->{2} 2->{3} 3->{6,2,1} 4->{5} 5->{6} 6->{3,5,4} I get the same linked two triangle structure for this six-symbol substitution. The problem with the digraph approach is that the order is not specific as it is in actual substitutions.

References

  • "The Construction of Self-Similar Tilings", Richard Kenyon, Section 6

Crossrefs

Programs

  • Mathematica
    s[1] = {4, 2}; s[2] = {1, 3}; s[3] = {1}; s[4] = {1, 5}; s[5] = {4, 6}; s[6] = {4}; t[a_] := Join[a, Flatten[s /@ a]]; p[0] = {1}; p[1] = t[{1}]; p[n_] := t[p[n - 1]] aa = p[5]

Formula

1->{4, 2} 2->{1, 3} 3->{1} 4->{1, 5} 5->{4, 6} 6->{4}

A105113 Triangle read by rows, based on the morphism f: 1->2, 2->3, 3->{3,5,5,5,4}, 4->5, 5->6, 6->{6,2,2,2,1}. First row is 1. If current row is a,b,c,..., then the next row is a,b,c,...,f(a),f(b),f(c),...

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 3, 5, 5, 5, 4, 1, 2, 2, 3, 2, 3, 3, 3, 5, 5, 5, 4, 2, 3, 3, 3, 5, 5, 5, 4, 3, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 6, 6, 6, 5, 1, 2, 2, 3, 2, 3, 3, 3, 5, 5, 5, 4, 2, 3, 3, 3, 5, 5, 5, 4, 3, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 3, 5, 5, 5, 4, 6, 6, 6, 5, 2, 3, 3, 3, 5, 5
Offset: 0

Views

Author

Roger L. Bagula, Apr 07 2005

Keywords

Comments

This substitution with the polynomial that goes with it gives a new tile, not predicted in the Kenyon paper.
q=3 version of bi-Kenyon 6-symbol substitution.

Crossrefs

Programs

  • Mathematica
    s[n_] := n /. {1 -> 2, 2 -> 3, 3 -> {3, 5, 5, 5, 4}, 4 -> 5, 5 -> 6, 6 -> {6, 2, 2, 2, 1}}; t[a_] := Join[a, Flatten[s /@ a]] p[0] = {1}; p[1] = t[{1}]; Flatten[ NestList[t, {1}, 5]]

A105258 Triangle of trajectory of 1 under the morphism 1->2, 2->13, 3->1.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 3, 1, 2, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 1, 2, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 2, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 2, 1, 1, 3
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2005

Keywords

Examples

			The first steps are:
{1}
{1, 2}
{1, 2, 2, 1, 3}
{1, 2, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1}
		

Crossrefs

Programs

  • Mathematica
    s[1] = {2}; s[2] = {1, 3}; s[3] = {1}; t[a_] := Join[a, Flatten[s /@ a]]; p[0] = {1}; p[1] = t[{1}]; p[n_] := t[p[n - 1]] aa = Flatten[Table[p[n], {n, 0, 6}]]
  • PARI
    {a(n)=local(m, v, w); v=w=[1]; while(length(w)
    				

Extensions

Edited by the Associate Editors of the OEIS, Apr 07 2009
Showing 1-3 of 3 results.