cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105142 Positive integers n such that n^12 + 1 is semiprime.

Original entry on oeis.org

2, 6, 34, 46, 142, 174, 204, 238, 312, 466, 550, 616, 690, 730, 1136, 1280, 1302, 1330, 1486, 1586, 1610, 1638, 1644, 1652, 1688, 1706, 1772, 1934, 1952, 1972, 2040, 2102, 2108, 2142, 2192, 2238, 2250, 2376, 2400, 2554, 2612, 2646, 3006, 3094, 3550, 3642
Offset: 1

Views

Author

Jonathan Vos Post, Apr 09 2005

Keywords

Comments

Since n^12 + 1 = (n^4+1) * (n^8 - n^4 + 1), n^12 + 1 can be semiprime only if both n^4 + 1 and n^8 - n^4 + 1 are prime.

Examples

			2^12+1 = 4097 = 17 * 241,
6^12+1 = 2176782337 = 1297 * 1678321,
34^12+1 = 2386420683693101057 = 1336337 * 1785792568561,
1136^12+1 = 4618915067251126036363854530631172097 = 1665379926017 * 2773490297975392253706241.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range@3691, PrimeQ[ #^4 + 1] && PrimeQ[(#^12 + 1)/(#^4 + 1)] &] (* Robert G. Wilson v *)
    Select[Range[4000],PrimeOmega[#^12+1]==2&] (* Harvey P. Dale, Jan 24 2013 *)

Extensions

a(16)-a(46) from Robert G. Wilson v, Feb 10 2006