cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105147 Triangular array read by rows: T(n,k) = number of compositions of n having smallest part equal to k.

Original entry on oeis.org

1, 1, 1, 3, 0, 1, 6, 1, 0, 1, 13, 2, 0, 0, 1, 27, 3, 1, 0, 0, 1, 56, 5, 2, 0, 0, 0, 1, 115, 9, 2, 1, 0, 0, 0, 1, 235, 15, 3, 2, 0, 0, 0, 0, 1, 478, 25, 5, 2, 1, 0, 0, 0, 0, 1, 969, 42, 8, 2, 2, 0, 0, 0, 0, 0, 1, 1959, 70, 12, 3, 2, 1, 0, 0, 0, 0, 0, 1, 3952, 116, 18, 5, 2, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Vladeta Jovovic, Apr 10 2005

Keywords

Examples

			1;
1,  1;
3,  0, 1;
6,  1, 0, 1;
13, 2, 0, 0, 1;
27, 3, 1, 0, 0, 1;
56, 5, 2, 0, 0, 0, 1;
		

Crossrefs

Cf. A048004.
Row sums give: A000079(n-1), columns k=1, 2 give: A099036(n-1), A200047. - Alois P. Heinz, Nov 13 2011

Programs

  • Maple
    p:= (t, l)-> zip((x, y)->x+y, t, l, 0):
    b:= proc(n) option remember; local j, t, h, m, s;
          t:= [0$(n-1), 1];
          for j to n-1 do
            h:= b(n-j);
            m:= nops(h);
            t:= p(p(t, [seq(h[i], i=1..min(j, m))]),
                       [0$(j-1), add(h[i], i=j+1..m)])
          od; t
        end:
    T:= n-> b(n)[]:
    seq(T(n), n=1..15); # Alois P. Heinz, Nov 13 2011
  • Mathematica
    zip[f_, x_, y_, z_] := With[{m = Max[Length[x], Length[y]]}, Thread[f[PadRight[x, m, z], PadRight[y, m, z]]]]; p[t_, l_] := zip[Plus, t, l, 0]; b[n_] := b[n] = Module[{j, t, h, m, s}, t = Append[Array[0&, n-1], 1]; For[j = 1, j <= n-1 , j++, h = b[n-j]; m = Length[h]; t = p[p[t, h[[1 ;; Min[j, m]]]], Append[Array[0&, j-1], h[[Min[j, m]+1 ;; m]] // Total]]]; t]; Table[b[n], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 29 2014, after Alois P. Heinz *)

Formula

G.f. for k-th column: (1-x)^2*x^k/((1-x-x^k)*(1-x-x^(k+1))).