A105210 a(1) = 393; for n > 1, a(n) = a(n-1) + 1 + sum of distinct prime factors of a(n-1) that are < a(n-1). edit.
393, 528, 545, 660, 682, 727, 728, 751, 752, 802, 1206, 1279, 1280, 1288, 1321, 1322, 1986, 2323, 2448, 2471, 2832, 2897, 2898, 2934, 3103, 3240, 3251, 3252, 3529, 3530, 3891, 5192, 5265, 5287, 5616, 5635, 5671, 5832, 5838, 5990, 6597, 7334, 7549, 7550
Offset: 1
Examples
a(2)=528 because a(1)=393, the distinct prime factors of a(1) are 3 and 131; finally, 1 + 393 + 3 + 131 = 528.
Links
- T. D. Noe, Table of n, a(n) for n = 1..2000
- Doug Engel, Problem 886, Math. Mag., 48 (1975), 57-58.
Programs
-
Haskell
a105210 n = a105210_list !! (n-1) a105210_list = 393 : map (\x -> x + 1 + sum (takeWhile (< x) $ a027748_row x)) a105210_list -- Reinhard Zumkeller, Jan 15 2015
-
Maple
with(numtheory): p:=proc(n) local nn,ct,s: if isprime(n)=true then s:=0 else nn:=convert(factorset(n),list): ct:=nops(nn): s:=sum(nn[j],j=1..ct):fi: end: a[1]:=393: for n from 2 to 50 do a[n]:=1+a[n-1]+p(a[n-1]) od:seq(a[n],n=1..50); # Emeric Deutsch, Apr 14 2005
-
Mathematica
a[1] = 393; a[n_] := a[n] = a[n - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[a[n - 1]]], # < a[n - 1] &]; Table[a[n], {n, 44}] (* Robert G. Wilson v, Apr 14 2005 *) a[1] = 412; a[n_] := a[n] = a[n - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[a[n - 1]]], # < a[n - 1] &]; Table[a[n], {n, 43}] (* Robert G. Wilson v, Apr 14 2005 *) a[1] = 668; a[n_] := a[n] = a[n - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[a[n - 1]]], # < a[n - 1] &]; Table[a[n], {n, 40}] (* Robert G. Wilson v, Apr 14 2005 *) a[1] = 932; a[n_] := a[n] = a[n - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[a[n - 1]]], # < a[n - 1] &]; Table[a[n], {n, 40}] (* Robert G. Wilson v, Apr 14 2005 *) nxt[n_]:=n+1+Total[Select[FactorInteger[n][[All,1]],#
Harvey P. Dale, Mar 02 2019 *)
Extensions
More terms from Robert G. Wilson v and Emeric Deutsch, Apr 14 2005
Comments