A105213 a(1) = 932; for n > 1, a(n) = a(n-1) + 1 + sum of distinct prime factors of a(n-1) that are < a(n-1).
932, 1168, 1244, 1558, 1621, 1622, 2436, 2478, 2550, 2578, 3870, 3924, 4039, 4624, 4644, 4693, 4726, 4885, 5868, 6037, 6038, 9060, 9222, 9310, 9344, 9420, 9588, 9658, 10111, 10112, 10194, 11899, 12136, 12217, 12880, 12918, 15077, 15078, 15450
Offset: 1
Examples
a(2)=1168 because a(1)=932, the distinct prime factors of a(1) are 2 and 233; finally, 1 + 932 + 2 + 233 = 1168.
Links
- T. D. Noe, Table of n, a(n) for n = 1..2000
- Doug Engel, Problem 886, Math. Mag., 48 (1975), 57-58.
Programs
-
Haskell
a105213 n = a105213_list !! (n-1) a105213_list = 932 : map (\x -> x + 1 + sum (takeWhile (< x) $ a027748_row x)) a105213_list -- Reinhard Zumkeller, Jan 15 2015
-
Maple
with(numtheory): p:=proc(n) local nn,ct,s: if isprime(n)=true then s:=0 else nn:=convert(factorset(n),list): ct:=nops(nn): s:=sum(nn[j],j=1..ct):fi: end: a[1]:=932: for n from 2 to 46 do a[n]:=1+a[n-1]+p(a[n-1]) od:seq(a[n],n=1..46); # Emeric Deutsch, Apr 14 2005
-
Mathematica
nx[n_]:=n+1+Total[Select[Transpose[FactorInteger[n]][[1]],#
Harvey P. Dale, Jul 24 2011 *)
Extensions
More terms from Robert G. Wilson v and Emeric Deutsch, Apr 14 2005
Comments