A105225 a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = -1, a(2) = -2.
1, -1, -2, 1, 6, 5, -6, -15, -2, 29, 34, -23, -90, -43, 138, 225, -50, -499, -398, 601, 1398, 197, -2598, -2991, 2206, 8189, 3778, -12599, -20154, 5045, 45354, 35265, -55442, -125971, -15086, 236857, 267030, -206683, -740742, -327375, 1154110, 1808861, -499358, -4117079, -3118362, 5115797
Offset: 0
Links
- Robert Munafo, Sequences Related to Floretions
- Index entries for linear recurrences with constant coefficients, signature (2, -3, 2).
Programs
-
Mathematica
LinearRecurrence[{2,-3,2},{1,-1,-2},50] (* or *) CoefficientList[ Series[ (-3*x^2+3*x-1)/(2*x^3-3*x^2+2*x-1),{x,0,50}],x] (* Harvey P. Dale, Jul 23 2012 *)
Formula
a(n) - a(n+1) = A002249(n).
a(n) = (A002249(n+1) + 1)/2.
From Harvey P. Dale, Jul 23 2012: (Start)
G.f.: -(3*x^2-3*x+1)/((x-1)*(2*x^2-x+1)).
a(n)=1/2*(1+(1/2*(1-I*Sqrt[7]))^n+(1/2*(1+I*Sqrt[7]))^n). (End)
Comments