A105282 Positive integers n such that n^20 + 1 is semiprime (A001358).
2, 4, 46, 154, 266, 472, 748, 1434, 1738, 2058, 2204, 2222, 2428, 2478, 2510, 2866, 3132, 3288, 3576, 3688, 3756, 4142, 4506, 4940, 5164, 6252, 6330, 6786, 7180, 7300, 7338, 7416, 7628, 7806, 9270, 9312, 10044, 10722, 10860, 12126, 12422, 12668, 12998, 13350
Offset: 1
Examples
2^20 + 1 = 1048577 = 17 * 61681, 4^20 + 1 = 1099511627777 = 257 * 4278255361, 46^20 + 1 = 1799519816997495209117766334283777 = 4477457 * 401906666439788301510827761, 1434^20 + 1 = 1352019721694375552250489804528860551814233886722212960509362177 = 4228599998737 * 319732233386510278346888399489424537759394853595121.
Links
- Robert Price, Table of n, a(n) for n = 1..1405
Crossrefs
Programs
-
Magma
IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1000] | IsSemiprime(n^20+1)] // Vincenzo Librandi, Dec 21 2010
-
Mathematica
Select[Range[1000000], PrimeQ[#^4 + 1] && PrimeQ[(#^20 + 1)/(#^4 + 1)] &] (* Robert Price, Mar 09 2015 *)
Formula
a(n)^20 + 1 is semiprime (A001358).
Extensions
a(9)-a(44) from Robert Price, Mar 09 2015
Comments