cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105306 Triangle read by rows: T(n,k) is the number of directed column-convex polyominoes of area n, having the top of the rightmost column at height k.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 12, 9, 4, 1, 16, 28, 25, 14, 5, 1, 32, 64, 66, 44, 20, 6, 1, 64, 144, 168, 129, 70, 27, 7, 1, 128, 320, 416, 360, 225, 104, 35, 8, 1, 256, 704, 1008, 968, 681, 363, 147, 44, 9, 1, 512, 1536, 2400, 2528, 1970, 1182, 553, 200, 54, 10, 1, 1024
Offset: 1

Views

Author

Emeric Deutsch, Apr 25 2005

Keywords

Comments

From Gary W. Adamson, Apr 24 2005: (Start)
Let A be the array
1, 0, 0, 0, 0, 0, ...
0, 1, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, ...
0, 2, 0, 1, 0, 0, ...
1, 0, 3, 0, 1, 0, ...
0, 3, 0, 4, 0, 1, ...
...
where columns are bin(n,k) with alternating zeros. (Row sums = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...(Fibonacci numbers).) Let P = infinite lower triangular Pascal triangle matrix (A007318). Form P * A: this gives the rows of the present sequence. [Comment corrected by Philippe Deléham, Dec 09 2008] (End)
T(n,k) is the number of nondecreasing Dyck paths of semilength n, having height of rightmost peak equal to k. Example: T(4,1)=4 because we have UDUDUDUD, UDUUDDUD, UUDDUDUD and UUUDDDUD, where U=(1,1) and D=(1,-1). Sum of row n = Fibonacci(2n-1) (A001519). Basically the same as A062110.
T(n,k) is the number of permutations of [n] with length n-k that avoid the patterns 321 and 3412. - Bridget Tenner, Sep 28 2005
T(2*n-1,n)/n = A001003(n-1) (little Schroeder numbers). Proof with Lagrange inversion of inverse of g.f. of A001003.
Row sums = odd-indexed Fibonacci numbers.
Diagonal sums: A077998. - Philippe Deléham, Nov 16 2008
Central coefficients are A176479. Inverse is A125692. - Paul Barry, Apr 18 2010
Riordan matrix ((1-x)/(1-2x),(x-x^2)/(1-2x)). - Emanuele Munarini, Mar 22 2011
T(n,k) is the number of ideals in the fence Z(2n-1) with n-k elements of rank 0. - Emanuele Munarini, Mar 22 2011
Triangle T(n,k), 1 <= k <= n, read by rows, given by (0,1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 30 2011
T(n,k) is the number of permutations of [n] for which k is equal to both the length and reflection length. - Bridget Tenner, Feb 22 2012

Examples

			Triangle begins:
   1;
   1,   1;
   2,   2,   1;
   4,   5,   3,   1;
   8,  12,   9,   4,   1;
  16,  28   25,  14,   5,   1;
  32,  64,  66,  44,  20,   6,   1;
  64, 144, 168, 129,  70,  27,   7,   1;
  ...
From _Paul Barry_, Apr 18 2010: (Start)
Production matrix is
   1,  1;
   1,  1,  1;
   0,  1,  1,  1;
  -1,  0,  1,  1,  1;
   0, -1,  0,  1,  1,  1;
   2,  0, -1,  0,  1,  1,  1;
   0,  2,  0, -1,  0,  1,  1,  1;
  -5,  0,  2,  0, -1,  0,  1,  1,  1;
   0, -5,  0,  2,  0, -1,  0,  1,  1,  1;
  14,  0, -5,  0,  2,  0, -1,  0,  1,  1,  1; (End)
		

References

  • V. E. Hoggatt, Jr. and Marjorie Bicknell, editors: "A Primer for the Fibonacci Numbers", 1970, p. 87.

Crossrefs

Cf. A001519. Essentially the same array as A062110.
Row sums = A001519(n-1), n >= 1.

Programs

  • Maple
    T:=proc(n,k) if k
    				
  • Mathematica
    t[n_, k_] := 2^(n-2*k-1)*Binomial[n, k]*Hypergeometric2F1[-k-1, -k, -n, -1]; t[n_, n_] = 1; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 28 2014 *)
  • Maxima
    create_list(sum(binomial(k+1,i)*binomial(n-i,k)*(-1)^i*2^(n-k-i),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 22 2011 */

Formula

T(n,k) = sum(binomial(k+j, k-1)*binomial(n-k-1, j), j=0..n-k-1) (0<=k<=n). (This appears to be incorrect. - Emanuele Munarini, Mar 22 2011)
G.f.: t*z*(1-z)/(1 - 2*z - t*z*(1-z)).
From Emanuele Munarini, Mar 22 2011: (Start)
T(n,k) = Sum_{i=0..n-k} binomial(k+1,i)*binomial(n-i,k)*(-1)^i*2^(n-k-i).
T(n,k) = Sum_{i=0..n-k} binomial(k+1,i)*M(i,n-k-i)*2^(n-k-i), where M(n,k) = n*(n+1)*(n+2)*...*(n+k-1)/k!. (End)
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Oct 30 2013

Extensions

Entry revised by N. J. A. Sloane, Apr 27 2007