A105306 Triangle read by rows: T(n,k) is the number of directed column-convex polyominoes of area n, having the top of the rightmost column at height k.
1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 12, 9, 4, 1, 16, 28, 25, 14, 5, 1, 32, 64, 66, 44, 20, 6, 1, 64, 144, 168, 129, 70, 27, 7, 1, 128, 320, 416, 360, 225, 104, 35, 8, 1, 256, 704, 1008, 968, 681, 363, 147, 44, 9, 1, 512, 1536, 2400, 2528, 1970, 1182, 553, 200, 54, 10, 1, 1024
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 2, 1; 4, 5, 3, 1; 8, 12, 9, 4, 1; 16, 28 25, 14, 5, 1; 32, 64, 66, 44, 20, 6, 1; 64, 144, 168, 129, 70, 27, 7, 1; ... From _Paul Barry_, Apr 18 2010: (Start) Production matrix is 1, 1; 1, 1, 1; 0, 1, 1, 1; -1, 0, 1, 1, 1; 0, -1, 0, 1, 1, 1; 2, 0, -1, 0, 1, 1, 1; 0, 2, 0, -1, 0, 1, 1, 1; -5, 0, 2, 0, -1, 0, 1, 1, 1; 0, -5, 0, 2, 0, -1, 0, 1, 1, 1; 14, 0, -5, 0, 2, 0, -1, 0, 1, 1, 1; (End)
References
- V. E. Hoggatt, Jr. and Marjorie Bicknell, editors: "A Primer for the Fibonacci Numbers", 1970, p. 87.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
- E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
- Jean-Luc Baril, Javier F. González, and José L. Ramírez, Last symbol distribution in pattern avoiding Catalan words, Univ. Bourgogne (France, 2022).
- Eunice Y. S. Chan, Robert M. Corless, Laureano Gonzalez-Vega, J. Rafael Sendra, Juana Sendra, and Steven E. Thornton, Bohemian Upper Hessenberg Toeplitz Matrices, arXiv:1809.10664 [cs.SC], 2018.
- Eunice Y. S. Chan, Robert M. Corless, Laureano Gonzalez-Vega, J. Rafael Sendra, and Juana Sendra, Upper Hessenberg and Toeplitz Bohemians, arXiv:1907.10677 [cs.SC], 2019.
- Emeric Deutsch and H. Prodinger, A bijection between directed column-convex polyominoes and ordered trees of height at most three, Theoretical Comp. Science, 307, 2003, 319-325.
- Sergi Elizalde, Rigoberto Flórez, and José Luis Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, Ars Mathematica Contemporanea (2021).
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, Journal of Integer Sequences, Vol. 28 (2025), Article 25.1.6. See pp. 9-10, 19.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
- V. V. Kruchinin and D. V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, arXiv preprint arXiv:1206.0877 [math.CO], 2012, and J. Int. Seq. 15 (2012) #12.9.3.
- E. Munarini and N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.
- T. K. Petersen and B. E. Tenner, The depth of a permutation, arXiv:1202.4765 [math.CO], 2012-2014..
- M. Pétréolle, Characterization of Cyclically Fully commutative elements in finite and affine Coxeter Groups, arXiv preprint arXiv:1403.1130 [math.GR], 2014.
- Bridget Eileen Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
- S.-n. Zheng and S.-l. Yang, On the-Shifted Central Coefficients of Riordan Matrices, Journal of Applied Mathematics, Volume 2014, Article ID 848374, 8 pages.
Programs
-
Maple
T:=proc(n,k) if k
-
Mathematica
t[n_, k_] := 2^(n-2*k-1)*Binomial[n, k]*Hypergeometric2F1[-k-1, -k, -n, -1]; t[n_, n_] = 1; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 28 2014 *)
-
Maxima
create_list(sum(binomial(k+1,i)*binomial(n-i,k)*(-1)^i*2^(n-k-i),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 22 2011 */
Formula
T(n,k) = sum(binomial(k+j, k-1)*binomial(n-k-1, j), j=0..n-k-1) (0<=k<=n). (This appears to be incorrect. - Emanuele Munarini, Mar 22 2011)
G.f.: t*z*(1-z)/(1 - 2*z - t*z*(1-z)).
From Emanuele Munarini, Mar 22 2011: (Start)
T(n,k) = Sum_{i=0..n-k} binomial(k+1,i)*binomial(n-i,k)*(-1)^i*2^(n-k-i).
T(n,k) = Sum_{i=0..n-k} binomial(k+1,i)*M(i,n-k-i)*2^(n-k-i), where M(n,k) = n*(n+1)*(n+2)*...*(n+k-1)/k!. (End)
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Oct 30 2013
Extensions
Entry revised by N. J. A. Sloane, Apr 27 2007
Comments