A105317 Powers of Fibonacci numbers.
0, 1, 2, 3, 4, 5, 8, 9, 13, 16, 21, 25, 27, 32, 34, 55, 64, 81, 89, 125, 128, 144, 169, 233, 243, 256, 377, 441, 512, 610, 625, 729, 987, 1024, 1156, 1597, 2048, 2187, 2197, 2584, 3025, 3125, 4096, 4181, 6561, 6765, 7921, 8192, 9261, 10946, 15625, 16384, 17711
Offset: 1
Keywords
Examples
2197 = 13^3 = A000045(7)^3, therefore 2197 is a term.
Links
- R. Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Eric Weisstein's World of Mathematics, Fibonacci Number
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a105317 n = a105317_list !! (n-1) a105317_list = 0 : 1 : h 1 (drop 4 a000045_list) (singleton (2, 2)) where h y xs'@(x:xs) s | x < ff = h y xs (insert (x, x) s) | ff == y = h y xs' s' | otherwise = ff : h ff xs' (insert (f * ff, f) s') where ((ff, f), s') = deleteFindMin s -- Reinhard Zumkeller, Feb 06 2015
-
Maple
N:= 10^6: # to get all terms <= N select(`<=`,{0,1,seq(seq(combinat:-fibonacci(i)^j, i = 3 ..floor(log[phi](sqrt(5)*N^(1/j)+1))),j=1..ilog2(N))},N); # if using Maple 11 or earlier, uncomment the next line # sort(convert(%,list)); # Robert Israel, Jan 26 2015
-
Mathematica
lim = 10^5; t = Table[f = Fibonacci[n]; f^Range[Floor[Log[lim]/Log[f]]], {n, 3, Ceiling[Log[GoldenRatio, lim] + 1]}]; Union[{0, 1}, Flatten[t]] (* T. D. Noe, Sep 27 2011 *)
-
PARI
list(lim)=my(v=List([0]),k=1,f,t); while(k<=lim, listput(v,k); k*=2); k=3; while(k<=lim, listput(v,k); k*=3); k=5; while(k<=lim, listput(v,k); k*=5); k=6; while((f=fibonacci(k++))<=lim, t=1; while((t*=f)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Oct 03 2016
Comments